Quantum phases of attractive bosons on a Bose-Hubbard ladder with three-body constraint

被引:20
作者
Singh, Manpreet [1 ]
Mishra, Tapan [2 ]
Pai, Ramesh V. [3 ]
Das, B. P. [1 ]
机构
[1] Indian Inst Astrophys, Bangalore 560034, Karnataka, India
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[3] Goa Univ, Dept Phys, Taleigao Plateau 403206, Goa, India
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 01期
关键词
ULTRACOLD; SUPERFLUID; GAS;
D O I
10.1103/PhysRevA.90.013625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We obtain the complete quantum phase diagram of bosons on a two-leg ladder in the presence of attractive onsite and repulsive interchain nearest-neighbor interactions by imposing the onsite three-body constraint. We find three distinct phases; namely, the atomic superfluid (ASF), dimer superfluid (DSF), and the dimer rung insulator (DRI). In the absence of the interchain nearest-neighbor repulsion, the system exhibits a transition from the ASF to the DSF phase with increasing onsite attraction. However, the presence of the interchain nearest-neighbor repulsion stabilizes a gapped DRI phase, which is flanked by the DSF phase. We also obtain the phase diagram of the system for different values of the interchain nearest-neighbor interaction. By evaluating different order parameters, we obtain the complete phase diagram and the properties of the phase transitions using the self-consistent cluster mean-field theory.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Bose-Hubbard model with attractive interactions and inhomogeneous lattice potential [J].
Khanore, Mukesh ;
Dey, Bishwajyoti .
SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 :139-141
[22]   Neural-network quantum states for a two-leg Bose-Hubbard ladder under magnetic flux [J].
Ceven, K. ;
Oktel, M. O. ;
Keles, A. .
PHYSICAL REVIEW A, 2022, 106 (06)
[23]   Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model [J].
Caleffi, Fabio ;
Capone, Massimo ;
Menotti, Chiara ;
Carusotto, Iacopo ;
Recati, Alessio .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[24]   Cavity-induced artificial gauge field in a Bose-Hubbard ladder [J].
Halati, Catalin-Mihai ;
Sheikhan, Ameneh ;
Kollath, Corinna .
PHYSICAL REVIEW A, 2017, 96 (06)
[25]   Competing insulating phases in a dimerized extended Bose-Hubbard model [J].
Hayashi, Aoi ;
Mondal, Suman ;
Mishra, Tapan ;
Das, B. P. .
PHYSICAL REVIEW A, 2022, 106 (01)
[26]   Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice with three-body interaction [J].
Zhou, Kezhao ;
Liang, Zhaoxin ;
Zhang, Zhidong .
PHYSICAL REVIEW A, 2010, 82 (01)
[27]   Characterization of Bose-Hubbard models with quantum nondemolition measurements [J].
Rogers, B. ;
Paternostro, M. ;
Sherson, J. F. ;
De Chiara, G. .
PHYSICAL REVIEW A, 2014, 90 (04)
[28]   Quantum Gutzwiller approach for the two-component Bose-Hubbard model [J].
Colussi, Victor E. ;
Caleffi, Fabio ;
Menotti, Chiara ;
Recati, Alessio .
SCIPOST PHYSICS, 2022, 12 (03)
[29]   Bose-Hubbard model for universal quantum-walk-based computation [J].
Underwood, Michael S. ;
Feder, David L. .
PHYSICAL REVIEW A, 2012, 85 (05)
[30]   Quench dynamics of hard-core bosons in the extended Bose-Hubbard model [J].
Paul, Boni ;
Singh, Manpreet ;
Das, Bhanu Pratap .
EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (06)