Visual Representation Learning for Preference-Aware Path Planning

被引:10
作者
Sikand, Kavan Singh [1 ]
Rabiee, Sadegh [1 ]
Uccello, Adam [1 ,2 ]
Xiao, Xuesu [1 ]
Warnell, Garrett [1 ,2 ]
Biswas, Joydeep [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] US Army Res Lab ARL, Adelphi, MD USA
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022 | 2022年
关键词
NAVIGATION;
D O I
10.1109/ICRA46639.2022.9811828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous mobile robots deployed in outdoor environments must reason about different types of terrain for both safety (e.g., prefer dirt over mud) and deployer preferences (e.g., prefer dirt path over flower beds). Most existing solutions to this preference-aware path planning problem use semantic segmentation to classify terrain types from camera images, and then ascribe costs to each type. Unfortunately, there are three key limitations of such approaches - they 1) require preenumeration of the discrete terrain types, 2) are unable to handle hybrid terrain types (e.g., grassy dirt), and 3) require expensive labelled data to train visual semantic segmentation. We introduce Visual Representation Learning for Preference-Aware Path Planning (VRL-PAP), an alternative approach that overcomes all three limitations: VRL-PAP leverages unlabelled human demonstrations of navigation to autonomously generate triplets for learning visual representations of terrain that are viewpoint invariant and encode terrain types in a continuous representation space. The learned representations are then used along with the same unlabelled human navigation demonstrations to learn a mapping from the representation space to terrain costs. At run time, VRL-PAP maps from images to representations and then representations to costs to perform preference-aware path planning. We present empirical results from challenging outdoor settings that demonstrate VRL-PAP 1) is successfully able to pick paths that reflect demonstrated preferences, 2) is comparable in execution to geometric navigation with a highly detailed manually annotated map (without requiring such annotations), 3) is able to generalize to novel terrain types with minimal additional unlabeled demonstrations.
引用
收藏
页码:11303 / 11309
页数:7
相关论文
共 22 条
[1]   The 1,000-km Challenge: Insights and Quantitative and Qualitative Results [J].
Biswas, Joydeep ;
Veloso, Manuela .
IEEE INTELLIGENT SYSTEMS, 2016, 31 (03) :86-96
[2]  
Biswas J, 2014, IEEE INT CONF ROBOT, P3969, DOI 10.1109/ICRA.2014.6907435
[3]  
Bruce J, 2018, P346
[4]   HarDNet: A Low Memory Traffic Network [J].
Chao, Ping ;
Kao, Chao-Yang ;
Ruan, Yu-Shan ;
Huang, Chien-Hsiang ;
Lin, Youn-Long .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3551-3560
[5]  
Chiang H.-T. L., 2019, IEEE ROBOTICS AUTOMA, VPP, P1
[6]   A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots [J].
Giusti, Alessandro ;
Guzzi, Jerome ;
Ciresan, Dan C. ;
He, Fang-Lin ;
Rodriguez, Juan P. ;
Fontana, Flavio ;
Faessler, Matthias ;
Forster, Christian ;
Schmidhuber, Jurgen ;
Di Caro, Gianni ;
Scaramuzza, Davide ;
Gambardella, Luca M. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :661-667
[7]   The STRANDS Project Long-Term Autonomy in Everyday Environments [J].
Hawes, Nick ;
Burbridge, Chris ;
Jovan, Ferdian ;
Kunze, Lars ;
Lacerda, Bruno ;
Mudrova, Lenka ;
Young, Jay ;
Wyatt, Jeremy ;
Hebesberger, Denise ;
Koertner, Tobias ;
Ambrus, Rares ;
Bore, Nils ;
Folkesson, John ;
Jensfelt, Patric ;
Beyer, Lucas ;
Hermans, Alexander ;
Leibe, Bastian ;
Aldoma, Aitor ;
Faeulhammer, Thomas ;
Zillich, Michael ;
Vincze, Markus ;
Chinellato, Eris ;
Al-Omari, Muhannad ;
Duckworth, Paul ;
Gatsoulis, Yiannis ;
Hogg, David C. ;
Cohn, Anthony G. ;
Dondrup, Christian ;
Fentanes, Jaime Pulido ;
Krajnik, Tomas ;
Santos, Joao M. ;
Duckett, Tom ;
Hanheide, Marc .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (03) :146-156
[8]  
Hermans Alexander., 2017, ARXIV
[9]  
Hirose N, 2018, IEEE INT C INT ROBOT, P3044, DOI 10.1109/IROS.2018.8594031
[10]   BADGR: An Autonomous Self-Supervised Learning-Based Navigation System [J].
Kahn, Gregory ;
Abbeel, Pieter ;
Levine, Sergey .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :1312-1319