A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials

被引:9
作者
Alavi, Seyyed Ali [1 ]
Haghighi, Ahmadreza [2 ]
Yari, Ayatollah [1 ]
Soltanian, Fahimeh [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Tech & Vocat Univ, Dept Math, Tehran, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2022年 / 10卷 / 03期
关键词
Fractional optimal control problem; Caputo derivative; Mott polynomials basis; Operational matrix; GENERAL FORMULATION; CALCULUS;
D O I
10.22034/cmde.2021.39419.1728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a numerical method for solving a class of fractional optimal control problems (FOCPs) based on numerical polynomial approximation. The fractional derivative in the dynamic system is described in the Caputo sense. We used the approach to approximate the state and control functions by the Mott polynomials (M-polynomials). We introduced the operational matrix of fractional Riemann-Liouville integration and apply it to approximate the fractional derivative of the basis. We investigated the convergence of the new method and some examples are included to demonstrate the validity and applicability of the proposed method.
引用
收藏
页码:755 / 773
页数:19
相关论文
共 50 条
[21]   Solving fractional optimal control problems within a Chebyshev-Legendre operational technique [J].
Bhrawy, A. H. ;
Ezz-Eldien, S. S. ;
Doha, E. H. ;
Abdelkawy, M. A. ;
Baleanu, D. .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) :1230-1244
[22]   A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems [J].
Ezz-Eldien, S. S. ;
Doha, E. H. ;
Baleanu, D. ;
Bhrawy, A. H. .
JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (01) :16-30
[23]   Comparison on wavelets techniques for solving fractional optimal control problems [J].
Sahu, P. K. ;
Ray, S. Saha .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (06) :1185-1201
[24]   A numerical method for solving fractional delay differential equations based on the operational matrix method [J].
Syam, Muhammed I. ;
Sharadga, Mwaffag ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2021, 147
[25]   A numerical approach for solving a class of two-dimensional variable-order fractional optimal control problems using Gegenbauer operational matrix [J].
Soufivand, Farzaneh ;
Soltanian, Fahimeh ;
Mamehrashi, Kamal .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2023, 40 (01) :1-19
[26]   BPs Operational Matrices for Solving Time Varying Fractional Optimal Control Problems [J].
Alipour, Mohsen ;
Rostamy, Davood .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (04) :292-304
[27]   A Chebyshev pseudospectral method for solving fractional-order optimal control problems [J].
Dabiri, Arman ;
Karimi, Laya .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :4917-4922
[28]   Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems [J].
Rabiei, Kobra ;
Razzaghi, Mohsen .
NONLINEAR DYNAMICS, 2023, 111 (07) :6469-6486
[29]   Genocchi polynomials as a tool for solving a class of fractional optimal control problems [J].
Tajadodi, Haleh ;
Jafari, Hossein ;
Ncube, Mahluli Naisbitt .
INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2022, 12 (02) :160-168
[30]   A Numerical Method for Solving a Class of Fractional Optimal Control Problems Using Boubaker Polynomial Expansion Scheme [J].
Singha, N. ;
Nahak, C. .
FILOMAT, 2018, 32 (13) :4485-4502