A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials

被引:9
作者
Alavi, Seyyed Ali [1 ]
Haghighi, Ahmadreza [2 ]
Yari, Ayatollah [1 ]
Soltanian, Fahimeh [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Tech & Vocat Univ, Dept Math, Tehran, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2022年 / 10卷 / 03期
关键词
Fractional optimal control problem; Caputo derivative; Mott polynomials basis; Operational matrix; GENERAL FORMULATION; CALCULUS;
D O I
10.22034/cmde.2021.39419.1728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a numerical method for solving a class of fractional optimal control problems (FOCPs) based on numerical polynomial approximation. The fractional derivative in the dynamic system is described in the Caputo sense. We used the approach to approximate the state and control functions by the Mott polynomials (M-polynomials). We introduced the operational matrix of fractional Riemann-Liouville integration and apply it to approximate the fractional derivative of the basis. We investigated the convergence of the new method and some examples are included to demonstrate the validity and applicability of the proposed method.
引用
收藏
页码:755 / 773
页数:19
相关论文
共 38 条
[21]   Optimal control of Volterra integral equations via triangular functions [J].
Maleknejad, K. ;
Almasieh, H. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1902-1909
[22]   Solving fractional optimal control problems using Genocchi polynomials [J].
Moghaddam, Maryam Arablouye ;
Tabriz, Yousef Edrisi ;
Lakestani, Mehrdad .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (01) :79-93
[24]   A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method [J].
Nemati, Ali ;
Yousefi, Sohrab Ali .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (05)
[25]  
Oldham K. B., 1974, FRACTIONAL CALCULUS
[26]   Fractional optimal control problem of an axis-symmetric diffusion-wave propagation [J].
Ozdemir, N. ;
Agrawal, O. P. ;
Karadeniz, D. ;
Iskender, B. B. .
PHYSICA SCRIPTA, 2009, T136
[27]   The Hamilton formalism with fractional derivatives [J].
Rabei, Eqab M. ;
Nawafleh, Khaled I. ;
Hijjawi, Raed S. ;
Muslih, Sami I. ;
Baleanu, Dumitru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :891-897
[28]  
Rivlin T. J, 2003, INTRO APPROXIMATION
[29]  
Roman S., 1984, The Umbral Calculus
[30]   Solving a class of fractional optimal control problems via a new efficient and accurate method [J].
Soradi-Zeid, Samaneh .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02) :480-492