The integrated density of states in strong magnetic fields

被引:2
作者
Briet, Philippe
Raikov, Georgi
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
[2] CNRS, Ctr Phys Theor, F-13288 Marseille, France
[3] CPT, Marseille, France
关键词
Schrodinger operators; magnetic fields; ergodic potentials; integrated density of states;
D O I
10.1016/j.jfa.2006.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider three-dimensional Schrodinger operators with constant magnetic fields and ergodic electric potentials. We study the strong magnetic field asymptotic behaviour of the integrated density of states, distinguishing between the asymptotics far from the Landau levels, and the asymptotics near a given Landau level. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:540 / 564
页数:25
相关论文
共 23 条
[1]  
[Anonymous], RANDOM OPER STOCHAST
[2]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[3]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[4]   DENSITY OF STATES IN THE PRESENCE OF A STRONG MAGNETIC-FIELD AND RANDOM IMPURITIES [J].
BREZIN, E ;
GROSS, DJ ;
ITZYKSON, C .
NUCLEAR PHYSICS B, 1984, 235 (01) :24-44
[5]  
BRODERIX K, 1993, PATH INTEGRALS MEV M, P98
[6]  
Carmona R., 1990, SPECTRAL THEORY RAND, DOI 10.1007/978-1-4939-0512-6_4
[7]   Global continuity of the integrated density of states for random Landau Hamiltonians [J].
Combes, JM ;
Hislop, PD ;
Klopp, F ;
Raikov, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) :1187-1213
[8]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[9]   The uniqueness of the integrated density of states for the Schrodinger operators with magnetic fields [J].
Doi, S ;
Iwatsuka, A ;
Mine, T .
MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (02) :335-371
[10]   Existence and uniqueness of the integrated density of states for Schrodinger operators with magnetic fields and unbounded random potentials [J].
Hupfer, T ;
Leschke, H ;
Müller, P ;
Warzel, S .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (12) :1547-1581