Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes

被引:172
作者
Pean, Clarisse [1 ,2 ,3 ]
Daffos, Barbara [2 ,3 ]
Rotenberg, Benjamin [1 ,3 ]
Levitz, Pierre [1 ]
Haefele, Matthieu [4 ]
Taberna, Pierre-Louis [2 ,3 ]
Simon, Patrice [2 ,3 ]
Salanne, Mathieu [1 ,2 ,4 ]
机构
[1] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[2] Univ Toulouse 3, UMR CNRS 5085, CIRIMAT, F-31062 Toulouse 9, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
[4] Univ Versailles, Univ Paris 11, INRIA, CNRS,CEA,USR 3441,Maison Simulat, F-91191 Gif Sur Yvette, France
基金
欧洲研究理事会;
关键词
DOUBLE-LAYER; MOLECULAR-DYNAMICS; CHARGE STORAGE; LIQUID; SUPERCAPACITORS; MODEL; ELECTROLYTES; CAPACITANCE; GRAPHITE;
D O I
10.1021/jacs.5b07416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.
引用
收藏
页码:12627 / 12632
页数:6
相关论文
共 40 条
[1]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[2]   Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid [J].
Chaban, Vitaly V. ;
Prezhdo, Oleg V. .
ACS NANO, 2014, 8 (08) :8190-8197
[3]   Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids [J].
Chaban, Vitaly V. ;
Voroshyloya, Iuliia V. ;
Kalugin, Oleg N. ;
Prezhdo, Oleg V. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (26) :7719-7727
[4]   Scaling behaviour for the water transport in nanoconfined geometries [J].
Chiavazzo, Eliodoro ;
Fasano, Matteo ;
Asinari, Pietro ;
Decuzzi, Paolo .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[6]  
Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
[7]   ON THE IMPEDANCE OF ELECTRODES WITH ROUGH INTERFACES [J].
DELEVIE, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1989, 261 (01) :1-9
[8]   A COMPUTER-SIMULATION STUDY OF THE DIELECTRIC-PROPERTIES OF A MODEL OF METHYL CYANIDE .1. THE RIGID DIPOLE CASE [J].
EDWARDS, DMF ;
MADDEN, PA ;
MCDONALD, IR .
MOLECULAR PHYSICS, 1984, 51 (05) :1141-1161
[9]   Subcontinuum mass transport of condensed hydrocarbons in nanoporous media [J].
Falk, Kerstin ;
Coasne, Benoit ;
Pellenq, Roland ;
Ulm, Franz-Josef ;
Bocquet, Lyderic .
NATURE COMMUNICATIONS, 2015, 6
[10]   NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors [J].
Forse, Alexander C. ;
Griffin, John M. ;
Merlet, Celine ;
Bayley, Paul M. ;
Wang, Hao ;
Simon, Patrice ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (22) :7231-7242