Laser hohlraum coupling efficiency on the Shenguang II facility

被引:19
作者
Chang, TQ
Ding, YK
Lai, DX
Huan, TX
Zhu, SP
Zheng, ZJ
Wang, GY
Zheng, YM
He, XT
Pei, WB
Duan, QS
Zhang, WY
Feng, TG
Chen, GN
Gu, PJ
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Acad Engn Phys, Ctr Laser Fus Phys, Sichuan Mianyang 621900, Peoples R China
关键词
D O I
10.1063/1.1516781
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently, hohlraum experiments were performed at the Shenguang-II (SG-II) laser facility [Lin , Chin. J. Lasers B10, Suppl. IV6 (2001)]. The measured maximum radiation temperature was 170 eV for the standard hohlraum and 150 eV for a 1.5-scaled one. This paper discusses the radiation temperature and laser hohlraum coupling efficiency in terms of a theoretical model [Phys. Plasmas 8, 1659 (2001)] and numerical simulation. A 2D laser-hohlraum coupling code, LARED-H [Chin. J. Comput. Phys. 19, 57 (2002)], gives a satisfactory coincidence with the measured time-resolved radiation temperature. Upon fitting the time-resolved curve, the theoretical model obtains the hohlraum coupling efficiency and, furthermore, the parameter n+s for the hohlraum wall material (Au) can be determined simultaneously, where n, s are the power exponents of temperature for the radiation Rosseland mean-free path and specific internal energy, respectively. (C) 2002 American Institute of Physics.
引用
收藏
页码:4744 / 4748
页数:5
相关论文
共 11 条
[1]  
CANAUD B, 2000, INERTIAL FUSION SCI, P261
[2]   Formulation of radiation temperature in hohlraums with large radiation energy loss [J].
Chang, TQ ;
Wang, GY .
PHYSICS OF PLASMAS, 2001, 8 (05) :1659-1663
[3]   Status of our understanding and modeling of x-ray coupling efficiency in laser heated hohlraums [J].
Dattolo, E ;
Suter, L ;
Monteil, MC ;
Jadaud, JP ;
Dague, N ;
Glenzer, S ;
Turner, R ;
Juraszek, D ;
Lasinski, B ;
Decker, C ;
Landen, O ;
MacGowan, B .
PHYSICS OF PLASMAS, 2001, 8 (01) :260-265
[4]  
[段庆生 Duan Qingsheng], 2002, [计算物理, Chinese Journal of Computational Physics], V19, P57
[5]   HIGH-TEMPERATURES IN INERTIAL CONFINEMENT FUSION RADIATION CAVITIES HEATED WITH 0.35-MU-M LIGHT [J].
KAUFFMAN, RL ;
SUTER, LJ ;
DARROW, CB ;
KILKENNY, JD ;
KORNBLUM, HN ;
MONTGOMERY, DS ;
PHILLION, DW ;
ROSEN, MD ;
THEISSEN, AR ;
WALLACE, RJ ;
ZE, F .
PHYSICAL REVIEW LETTERS, 1994, 73 (17) :2320-2323
[6]   DEVELOPMENT OF THE INDIRECT-DRIVE APPROACH TO INERTIAL CONFINEMENT FUSION AND THE TARGET PHYSICS BASIS FOR IGNITION AND GAIN [J].
LINDL, J .
PHYSICS OF PLASMAS, 1995, 2 (11) :3933-4024
[7]  
Lindl J. D., 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
[8]  
NISHIMURA H, 1993, 14 INT C PLASM PHYS, P3
[9]   Radiation temperature scaling in indirect-drive hohlraums [J].
Pei, WB ;
Chang, TQ ;
Wang, GY ;
Zhang, XH ;
Sui, CZ ;
Zhang, J .
PHYSICS OF PLASMAS, 1999, 6 (08) :3337-3344
[10]   Radiation drive in laser-heated hohlraums [J].
Suter, LJ ;
Kauffman, RL ;
Darrow, CB ;
Hauer, AA ;
Kornblum, H ;
Landen, OL ;
Orzechowski, TJ ;
Phillion, DW ;
Porter, JL ;
Powers, LV ;
Richard, A ;
Rosen, MD ;
Thiessen, AR ;
Wallace, R .
PHYSICS OF PLASMAS, 1996, 3 (05) :2057-2062