A process simulation study of CO2 capture by ionic liquids

被引:72
|
作者
Ma, Tao [1 ,2 ]
Wang, Jiexin [1 ,2 ,3 ]
Du, Zengzhi [1 ,2 ]
Abdeltawab, Ahmed A. [4 ]
Al-Enizi, Abdullah M. [4 ]
Chen, Xiaochun [1 ,2 ]
Yu, Guangren [1 ,2 ,3 ]
机构
[1] Beijing Univ Chem Technol, Beijing Key Lab Membrane Sci & Technol, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] King Saud Univ, Dept Chem, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
Ionic liquid; Carbon dioxide; Ethanolamine; Simulation; Capture; CARBON-DIOXIDE; PHASE-BEHAVIOR; 1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; CONCEPTUAL PROCESS; SOLUBILITY; MIXTURES; ACETATE; GASES; PLANT; PLUS;
D O I
10.1016/j.ijggc.2017.01.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study was aimed to simulate a new ionic liquids (ILs)-based CO2 capture process which is useful to capture CO2 from model flue gas, by using two promising CO2 absorbents, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]). Thermodynamic properties such as vapor pressure, heat capacity and density were modeled. Vapor-liquid equilibrium (VLE) data were calculated by Redlich-Kwong (R-K) equation and NRTL model. The calculated VLE data were in good agreement with the experimental values. This ILs-based CO2 capture process is characterized with few advantages such as there is no issue of water; solvent (ILs) loss is negligible as compared to monoethanolamine (MEA)-based CO2 capture process (e.g., 0.299 g/tCO(2) for [bmim][BF4] and 0.391 g/tCO(2) for [bmim][PF6] respectively, while 178 g/tCO(2) for MEA); potential corrosion risk is excluded; the energy consumption in [bmim][BF4]- and [bmim][PF6]-based processes are lowered up to 26.7% and 24.8% respectively than that in MEA-based process. Thus, such an ILs-based CO2 capture process is more competitive than traditional MEA-based CO2 capture process. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [31] Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture
    Wang, Congmin
    Luo, Xiaoyan
    Luo, Huimin
    Jiang, De-en
    Li, Haoran
    Dai, Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (21) : 4918 - 4922
  • [32] An optimization approach for CO2 capture using ionic liquids
    Valencia-Marquez, Darinel
    Flores-Tlacuahuac, Antonio
    Vasquez-Medrano, Ruben
    JOURNAL OF CLEANER PRODUCTION, 2017, 168 : 1652 - 1667
  • [33] Mechanisms of CO2 capture in ionic liquids: a computational perspective
    Mercy, Maxime
    de Leeuw, Nora H.
    Bell, Robert G.
    FARADAY DISCUSSIONS, 2016, 192 : 479 - 492
  • [34] Amine-functionalized ionic liquids for CO2 capture
    Zhu, Xueying
    Chen, Zijiao
    Ai, Hongqi
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (12)
  • [35] Iodine capture by ionic liquids and recovery by compressed CO2
    Chen, Yu
    Zhang, Fuguang
    Xue, Zhimin
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 223 : 202 - 208
  • [36] Recent Advances in CO2 Capture by Functionalized Ionic Liquids
    Pan, Mingguang
    Wang, Congmin
    ADVANCES IN CO2 CAPTURE, SEQUESTRATION, AND CONVERSION, 2015, 1194 : 341 - 369
  • [37] State-of-the-Art of CO2 Capture with Ionic Liquids
    Ramdin, Mahinder
    de Loos, Theo W.
    Vlugt, Thijs J. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (24) : 8149 - 8177
  • [38] Challenges and for the utilisation of ionic liquids as solvents for CO2 capture
    Mota-Martinez, Maria T.
    Brandl, Patrick
    Hallett, Jason P.
    Mac Dowell, Niel
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (03): : 560 - 571
  • [39] Amine-functionalized ionic liquids for CO2 capture
    Xueying Zhu
    Zijiao Chen
    Hongqi Ai
    Journal of Molecular Modeling, 2020, 26
  • [40] Absorption mechanism in CO2 capture with amino acid ionic liquids: Experimental and simulation studies
    Xing, Huabin
    Wang, Zhiping
    Yang, Qiwei
    Bao, Zongbi
    Su, Baogen
    Zhang, Zhiguo
    Yang, Yiwen
    Ren, Qilong
    Dai, Sheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246