A process simulation study of CO2 capture by ionic liquids

被引:72
|
作者
Ma, Tao [1 ,2 ]
Wang, Jiexin [1 ,2 ,3 ]
Du, Zengzhi [1 ,2 ]
Abdeltawab, Ahmed A. [4 ]
Al-Enizi, Abdullah M. [4 ]
Chen, Xiaochun [1 ,2 ]
Yu, Guangren [1 ,2 ,3 ]
机构
[1] Beijing Univ Chem Technol, Beijing Key Lab Membrane Sci & Technol, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] King Saud Univ, Dept Chem, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
Ionic liquid; Carbon dioxide; Ethanolamine; Simulation; Capture; CARBON-DIOXIDE; PHASE-BEHAVIOR; 1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; CONCEPTUAL PROCESS; SOLUBILITY; MIXTURES; ACETATE; GASES; PLANT; PLUS;
D O I
10.1016/j.ijggc.2017.01.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study was aimed to simulate a new ionic liquids (ILs)-based CO2 capture process which is useful to capture CO2 from model flue gas, by using two promising CO2 absorbents, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]). Thermodynamic properties such as vapor pressure, heat capacity and density were modeled. Vapor-liquid equilibrium (VLE) data were calculated by Redlich-Kwong (R-K) equation and NRTL model. The calculated VLE data were in good agreement with the experimental values. This ILs-based CO2 capture process is characterized with few advantages such as there is no issue of water; solvent (ILs) loss is negligible as compared to monoethanolamine (MEA)-based CO2 capture process (e.g., 0.299 g/tCO(2) for [bmim][BF4] and 0.391 g/tCO(2) for [bmim][PF6] respectively, while 178 g/tCO(2) for MEA); potential corrosion risk is excluded; the energy consumption in [bmim][BF4]- and [bmim][PF6]-based processes are lowered up to 26.7% and 24.8% respectively than that in MEA-based process. Thus, such an ILs-based CO2 capture process is more competitive than traditional MEA-based CO2 capture process. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [31] Novel pressure and temperature swing processes for CO2 capture using low viscosity ionic liquids
    Zubeir, Lawien F.
    Lacroix, Mark H. M.
    Meuldijk, Jan
    Kroon, Maaike C.
    Kiss, Anton A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 204 : 314 - 327
  • [32] A Rational Approach to CO2 Capture by Imidazolium Ionic Liquids: Tuning CO2 Solubility by Cation Alkyl Branching
    Corvo, Marta C.
    Sardinha, Joao
    Casimiro, Teresa
    Marin, Graciane
    Seferin, Marcus
    Einloft, Sandra
    Menezes, Sonia C.
    Dupont, Jairton
    Cabrita, Eurico J.
    CHEMSUSCHEM, 2015, 8 (11) : 1935 - 1946
  • [33] The Research Progress of CO2 Capture with Ionic Liquids
    Zhao Zhijun
    Dong Haifeng
    Zhang Xiangping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (01) : 120 - 129
  • [34] Progress and Development of Capture for CO2 by Ionic Liquids
    Zhang, L.
    Chen, J.
    Lv, J. X.
    Wang, S. F.
    Cui, Y.
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (05) : 2355 - 2358
  • [35] What Determines CO2 Solubility in Ionic Liquids? A Molecular Simulation Study
    Klaehn, Marco
    Seduraman, Abirami
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (31) : 10066 - 10078
  • [36] Screening of ionic liquids for CO2 capture using the COSMO-SAC model
    Lee, Bong-Seop
    Lin, Shiang-Tai
    CHEMICAL ENGINEERING SCIENCE, 2015, 121 : 157 - 168
  • [37] Phase-Change Ionic Liquids for Postcombustion CO2 Capture
    Seo, Samuel
    Simoni, Luke D.
    Ma, Mengting
    DeSilva, M. Aruni
    Huang, Yong
    Stadtherr, Mark A.
    Brennecke, Joan F.
    ENERGY & FUELS, 2014, 28 (09) : 5968 - 5977
  • [38] Validation and prediction of solubility parameters of ionic liquids for CO2 capture
    Sistla, Yamini Sudha
    Jain, Lucky
    Khanna, Ashok
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 97 : 51 - 64
  • [39] Anhydrous "Dry Ionic Liquids": A promising absorbent for CO2 capture
    Chen, Meisi
    Wang, Xindian
    Liu, Xiemin
    Wu, Youting
    Zhang, Feng
    Zhang, Zhibing
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 305 (305)
  • [40] Energy Analysis of Physical Absorption and Chemical Absorption of CO2 in Ionic Liquids
    Xie, Yujiao
    Liu, Gang
    Nie, Haiwei
    Yu, Fangyong
    Xing, Xiaoxue
    Cui, Hongyou
    Xing, Xiaoxue
    ENERGY TECHNOLOGY, 2020, 8 (01)