Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data

被引:138
作者
Zhang, Jian-Zhi [1 ]
Zhou, Xiao-Ping [1 ,2 ]
Zhou, Lun-Shi [3 ]
Berto, Filippo [4 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing, Peoples R China
[2] Chongqing Engn Res Ctr Automat Monitoring Geol Ha, Chongqing, Peoples R China
[3] Univ Calif Los Angeles, Coll Letters & Sci, Los Angeles, CA USA
[4] Norwegian Univ Sci & Technol, Dept Mech Engn, Trondheim, Norway
基金
中国国家自然科学基金;
关键词
acoustic emission; combined NDT techniques; digital image correlation; microscopic failure mechanism; non-isometric flaws; progressive fracturing; FRACTURE-TOUGHNESS; CRACK-PROPAGATION; COALESCENCE; SPECIMENS; BEHAVIOR; EMISSION; SANDSTONE; LIMESTONE; GROWTH;
D O I
10.1111/ffe.13019
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Uniaxial compression tests combined with nondestructive testing techniques are performed to explore the roles of non-isometric flaws in crack developments in brittle rocks. The acoustic emission (AE) rate-process theory is adopted to analyze fracture-related AE event rate characteristics. The full-field optical method is applied to detect cracking modes. Experimental results show that AE activity is quite active when the matrix microcracking is dominant, while after each macrocracking event, AE activity becomes inactive because of the stress release. Multiphysical data for each tested flaw configuration faithfully confirm the rupture progressivity. The larger the flaw length ratio, the lower the peak stress (also peak axial strain and elastic modulus), as well as the more progressive the cracking process. Moreover, ultimate failure is triggered by the shear fracturing from the relatively long flaw. The short flaw is conditionally involved in ultimate failure when the stress buildup effect dominates. Finally, the fracture mechanism of brittle rocks with non-isometric flaws is revealed.
引用
收藏
页码:1787 / 1802
页数:16
相关论文
共 31 条
[1]   Size-dependent fracture behavior of Guiting limestone under mixed mode loading [J].
Akbardoost, J. ;
Ayatollahi, M. R. ;
Aliha, M. R. M. ;
Pavier, M. J. ;
Smith, D. J. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 71 :369-380
[2]  
Akbardoost J., 2014, ENG SOLID MECH, V2, P183, DOI 10.5267/j.esm.2014.4.005
[3]   Typical Upper Bound-Lower Bound Mixed Mode Fracture Resistance Envelopes for Rock Material [J].
Aliha, M. R. M. ;
Ayatollahi, M. R. ;
Akbardoost, J. .
ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (01) :65-74
[4]   Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading [J].
Aliha, M. R. M. ;
Ayatollahi, M. R. ;
Smith, D. J. ;
Pavier, M. J. .
ENGINEERING FRACTURE MECHANICS, 2010, 77 (11) :2200-2212
[5]   Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J].
Bobet, A ;
Einstein, HH .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1998, 35 (07) :863-888
[6]   Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression [J].
Cao, Ping ;
Liu, Taoying ;
Pu, Chengzhi ;
Lin, Hang .
ENGINEERING GEOLOGY, 2015, 187 :113-121
[7]   Study of mode I crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens [J].
Dong, Y. Q. ;
Zhu, Z. M. ;
Zhou, L. ;
Ying, P. ;
Wang, M. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (08) :1810-1822
[8]   Fracture initiation and propagation in intact rock - A review [J].
Hoek, E. ;
Martin, C. D. .
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2014, 6 (04) :287-300
[9]   Evolution of Rock Cracks Under Unloading Condition [J].
Huang, R. Q. ;
Huang, D. .
ROCK MECHANICS AND ROCK ENGINEERING, 2014, 47 (02) :453-466
[10]  
Isheyskiy V., 2017, ENG SOLID MECH, V5, P199, DOI [10.5267/j.esm.2017.4.001, DOI 10.5267/J.ESM.2017.4.001]