Time accurate simulations of supersonic unsteady flow

被引:0
|
作者
van Buuren, R [1 ]
Kuerten, JGM [1 ]
Geurts, BJ [1 ]
Zandbergen, PJ [1 ]
机构
[1] Univ Twente, Fac Math Sci, JM Burgers Ctr, Twente Inst Mech, NL-7500 AE Enschede, Netherlands
来源
SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS | 1998年 / 515卷
关键词
DNS; TVD methods; implicit methods; supersonic; chaos;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the properties of an implicit time integration method for the simulation of unsteady shock boundary layer interaction dow. Using an explicit second order Runge-Kutta scheme we determine a reference solution for the implicit second order Crank Nicolson scheme. This A-stable scheme allows the time step to be determined solely by the resolution requirements of the unsteady how phenomena. The nonlinear equations which result from the temporal and spatial discretisation are solved iteratively by adding a pseudo time derivative to which the Euler backward scheme is applied. As a criterion for the accuracy of the solution we relate the global error caused by the temporal integration to the error resulting from the spatial discretisation. We study the dependence of the accuracy of the solution on the time step and the accuracy with which the solution is determined at each instant. Numerical simulations show that the time step needed for acceptable accuracy is considerably larger than the explicit stability time step. For mean flow quantities the time step can be increased by a factor eighty while instantaneous flow quantities are predicted accurately with a twenty times larger step size.
引用
收藏
页码:326 / 331
页数:6
相关论文
共 50 条
  • [1] Simulations of the unsteady flow through the Fastrac supersonic turbine
    Griffin, LW
    Dorney, DJ
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 225 - 233
  • [2] Implicit time accurate simulation of unsteady flow
    van Buuren, R
    Kuerten, H
    Geurts, BJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (06) : 687 - 720
  • [3] ROSENBROCK TIME INTEGRATION FOR UNSTEADY FLOW SIMULATIONS
    Blom, D. S.
    Bijl, H.
    Birken, P.
    Meister, A.
    van Zuijlen, A. H.
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, : 937 - 948
  • [4] High-order accurate simulations of unsteady flow past plunging and pitching airfoils
    Liang, Chunlei
    Ou, Kui
    Premasuthan, Sachin
    Jameson, Antony
    Wang, Z. J.
    COMPUTERS & FLUIDS, 2011, 40 (01) : 236 - 248
  • [5] Unsteady transverse injection of kerosene into a supersonic flow
    徐胜利
    R.D.Archer
    B.E.Milton
    岳朋涛
    Science in China(Series E:Technological Sciences), 2000, (02) : 206 - 214
  • [6] UNSTEADY-FLOW IN A SUPERCRITICAL SUPERSONIC DIFFUSER
    BIEDRON, RT
    ADAMSON, TC
    AIAA JOURNAL, 1988, 26 (11) : 1336 - 1345
  • [7] NUMERICAL CALCULATION OF WINGS IN STEADY OR UNSTEADY SUPERSONIC FLOW .2. UNSTEADY FLOW
    FENAIN, M
    GUIRAUDV.D
    RECHERCHE AEROSPATIALE, 1967, (116): : 23 - &
  • [8] Unsteady transverse injection of kerosene into a supersonic flow
    Shengli Xu
    R. D. Archer
    B. E. Milton
    Pengtao Yue
    Science in China Series E: Technological Sciences, 2000, 43 : 206 - 214
  • [9] A PHYSICAL THEORY OF SUPERSONIC AEROFOILS IN UNSTEADY FLOW
    STRANG, WJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1948, 195 (1041): : 245 - 264
  • [10] Numericl Analysis Supersonic Cavity Unsteady Flow
    Liu Ou-zi
    Cai Jin-sheng
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 783 - 789