Total Roman domination for proper interval graphs

被引:6
作者
Poureidi, Abolfazl [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
关键词
Total Roman domination; algorithm; proper interval graph; ALGORITHMS; NUMBER;
D O I
10.5614/ejgta.2020.8.2.16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A function f : V -> {0, 1, 2} is a total Roman dominating function (TRDF) on a graph G = (V, E) if for every vertex v is an element of V with f(v) = 0 there is a vertex u adjacent to v with f(u) = 2 and for every vertex v is an element of V with f(v) > 0 there exists a vertex u is an element of N-G(v) with f(u) > 0. The weight of a total Roman dominating function f on G is equal to f(V) = Sigma(v is an element of V) f(v). The minimum weight of a total Roman dominating function on G is called the total Roman domination number of G. In this paper, we give an algorithm to compute the total Roman domination number of a given proper interval graph G = (V, E) in O(vertical bar V vertical bar) time.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 15 条
[1]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[2]   Bounds on weak and strong total domination number in graphs [J].
Akhbari, M. H. ;
Rad, N. Jafari .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2016, 4 (01) :111-118
[3]   Nordhaus-Gaddum bounds for total Roman domination [J].
Amjadi, J. ;
Sheikholeslami, S. M. ;
Soroudi, M. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) :126-133
[4]  
Amjadi J, 2017, AUSTRALAS J COMB, V69, P271
[5]   ON THE TOTAL ROMAN DOMINATION IN TREES [J].
Amjadi, Jafar ;
Sheikholeslami, Seyed Mahmoud ;
Soroudi, Marzieh .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) :519-532
[6]   Secure domination in proper interval graphs [J].
Araki, Toru ;
Miyazaki, Hiroka .
DISCRETE APPLIED MATHEMATICS, 2018, 247 :70-76
[7]   The Eternal Dominating Set problem for proper interval graphs [J].
Braga, Andrei ;
de Souza, Cid C. ;
Lee, Orlando .
INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) :582-587
[8]   New algorithms for weighted k-domination and total k-domination problems in proper interval graphs [J].
Chiarelli, Nina ;
Romina Hartinger, Tatiana ;
Alejandra Leoni, Valeria ;
Lopez Pujato, Maria Ines ;
Milanic, Martin .
THEORETICAL COMPUTER SCIENCE, 2019, 795 :128-141
[9]   Roman domination on strongly chordal graphs [J].
Liu, Chun-Hung ;
Chang, Gerard J. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (03) :608-619
[10]   OPTIMAL GREEDY ALGORITHMS FOR INDIFFERENCE GRAPHS [J].
LOOGES, PJ ;
OLARIU, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (07) :15-25