High-performance texturization of multicrystalline silicon wafer by HF/HNO3/H2O system incorporated with MnO2 particles

被引:14
作者
Liu, Huan [1 ,2 ]
Zhao, Lei [1 ,2 ,3 ]
Diao, Hongwei [1 ]
Wang, Wenjing [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Solar Thermal Energy & Photovolta Syst, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-crystalline silicon; Texturization; Wet acid etching; Manganese dioxide; Reflectance; Solar cell; SOLAR-CELLS; SINGLE-CRYSTALLINE; BLACK SILICON; FABRICATION; MASK; ANTIREFLECTION; HF;
D O I
10.1016/j.mssp.2019.06.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Manganese dioxide (MnO2) particles were incorporated into the traditional wet acid etching (HF/HNO3/H2O) system to improve the texturization performance of multicrystalline silicon (mc-Si) wafers. Low surface reflectance (R) was obtained on both the slurry wire sawn (SWS) me-Si and the diamond wire sawn (DWS) me-Si. By studying the effects of the MnO2 usage amount and the reaction time on the average thickness reduction, the texture morphology and R of the textured me-Si wafer, the etching mechanism was revealed. Via optimizing the etching condition preliminarily, a low weighted average surface reflectance (R-a) for the AM1.5G sun spectrum in the wavelength range of 380-1100 nm was achieved as about 23% on SWS me-Si and about 25% on DWS me-Si.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 2017, CRC HDB CHEM PHYS RE, DOI DOI 10.1201/9781315380476
[2]   Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells [J].
Baker-Finch, Simeon C. ;
McIntosh, Keith R. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :960-971
[3]   Polarization-driven self-organization of silver nanoparticles in 1D and 2D subwavelength gratings for plasmonic photocatalysis [J].
Baraldi, G. ;
Bakhti, S. ;
Liu, Z. ;
Reynaud, S. ;
Lefkir, Y. ;
Vocanson, F. ;
Destouches, N. .
NANOTECHNOLOGY, 2017, 28 (03)
[4]  
Calahorra Y, 2017, SCI REP-UK, V7, DOI [10.1038/srep40891, 10.1038/s41598-017-14611-6, 10.1038/s41598-017-04402-4]
[5]   Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency [J].
Cao, Fang ;
Chen, Kexun ;
Zhang, Jingjiao ;
Ye, Xiaoya ;
Li, Jianjiang ;
Zou, Shuai ;
Su, Xiaodong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 141 :132-138
[6]   Nanostructured silicon photoelectrodes for solar water electrolysis [J].
Chandrasekaran, Soundarrajan ;
Nann, Thomas ;
Voelcker, Nicolas H. .
NANO ENERGY, 2015, 17 :308-322
[7]   Plasma cryogenic etching of silicon: from the early days to today's advanced technologies [J].
Dussart, R. ;
Tillocher, T. ;
Lefaucheux, P. ;
Boufnichel, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (12)
[8]   One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells [J].
Huang, Z. G. ;
Lin, X. X. ;
Zeng, Y. ;
Zhong, S. H. ;
Song, X. M. ;
Liu, C. ;
Yuan, X. ;
Shen, W. Z. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 :302-310
[9]   Nanostructured multi-crystalline silicon solar cell with isotropic etching by HF/KMnO4 [J].
Jiang, Ye ;
Shen, Honglie ;
Zheng, Chaofan ;
Pu, Tian ;
Wu, Jing ;
Rui, Chunbao ;
Yang, Wangyang ;
Li, Yufang .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (05)
[10]   >20.5% Diamond Wire Sawn Multicrystalline Silicon Solar Cells With Maskless Inverted Pyramid Like Texturing [J].
Jin, Jingsheng ;
Shen, Hui ;
Zheng, Peiting ;
Chan, Keng Siew ;
Zhang, Xinyu ;
Jin, Hao .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (05) :1264-1269