Biochemical methane potential of oil-extracted microalgae and glycerol in co-digestion with chicken litter

被引:19
作者
Carlos Meneses-Reyes, Jose [1 ]
Hernandez-Eugenio, Guadalupe [1 ]
Huber, David H. [2 ,3 ]
Balagurusamy, Nagamani [4 ]
Espinosa-Solares, Teodoro [1 ]
机构
[1] Univ Autonoma Chapingo, Posgrad Ingn Agr & Uso Integral Agua, Chapingo 56230, Estado De Mexic, Mexico
[2] West Virginia State Univ, Gus R Douglass Inst, Institute, WV 25112 USA
[3] West Virginia State Univ, Dept Biol, Institute, WV 25112 USA
[4] Univ Autonoma Coahuila, Escuela Ciencias Biol, Lab Biorremediac, Torreon 27000, Coahuila, Mexico
关键词
Oil-extracted microalgae; Glycerol; VFAs profile; Gompertz model; Biodiesel residuals; Mesophilic; ANAEROBIC-DIGESTION; SEWAGE-SLUDGE; WASTE; OPTIMIZATION; PRETREATMENT;
D O I
10.1016/j.biortech.2016.11.012
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The objective of this work was to evaluate the technical feasibility of using both oil-extracted microalgae (M) and glycerol (G) in co-digestion with chicken litter (CL), thereby improving biochemical methane potential (BMP). Different feedstock ratios of M (0-30%), G (0-3%) and CL (67-100%) were investigated to determine the best co-digestion condition under mesophilic conditions. According to the modified Gompertz model, the best BMP (131.1 mL CH4 g(VSfed)(-1)) was obtained with the triple co-digestion (M: G: CL) in a proportion of 30:3:67. This yielded a methane production rate (mu m) of 3.3 mL CH4 g(VSfed)(-1) d(-1) and a lag time (lambda) of 17.4 d. This treatment reduced chemical oxygen demand (COD) by 91.02% and increased the methane yield 15.8% with respect to the CL control. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 28 条
[1]   Biochemical methane potential of microalgae biomass after lipid extraction [J].
Alzate, M. E. ;
Munoz, R. ;
Rogalla, F. ;
Fdz-Polanco, F. ;
Perez-Elvira, S. I. .
CHEMICAL ENGINEERING JOURNAL, 2014, 243 :405-410
[2]  
Amon Th., 2006, INT C SERIES, V1293, P217, DOI DOI 10.1016/J.ICS.2006.03.007
[3]  
[Anonymous], 2002, WATER INTELL ONLINE, DOI DOI 10.2166/9781780403052
[4]  
APHA A., 1998, STANDARD METHODS EXA
[5]  
Botheju D., 2011, The Open Waste Management Journal, V4, P1, DOI 10.2174/1876400201104010001
[6]   Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy [J].
Campanaro, Stefano ;
Treu, Laura ;
Kougias, Panagiotis G. ;
De Francisci, Davide ;
Valle, Giorgio ;
Angelidaki, Irini .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
[7]  
Chow WL, 2015, J ENG SCI TECHNOL, V10, P17
[8]   Anaerobic digestion of microalgae residues resulting from the biodiesel production process [J].
Ehimen, E. A. ;
Sun, Z. F. ;
Carrington, C. G. ;
Birch, E. J. ;
Eaton-Rye, J. J. .
APPLIED ENERGY, 2011, 88 (10) :3454-3463
[9]   Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass [J].
Ehimen, Ehiaze A. ;
Connaughton, Sean ;
Sun, Zhifa ;
Carrington, Gerry C. .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2009, 1 (06) :371-381
[10]   Organic loading rate: A promising microbial management tool in anaerobic digestion [J].
Ferguson, Robert M. W. ;
Coulon, Frederic ;
Villa, Raffaella .
WATER RESEARCH, 2016, 100 :348-356