On trigonometric polynomials least deviating from zero

被引:3
作者
Arestov, V. V. [1 ]
Mendelev, A. S. [2 ]
机构
[1] Ural State Univ, Ekaterinburg 620083, Russia
[2] Russian Acad Sci, Inst Math & Mech, Ural Div, Ekaterinburg 620219, Russia
关键词
Real Line; Chebyshev Polynomial; DOKLADY Mathematic; Trigonometric Polynomial; Harmonic Measure;
D O I
10.1134/S1064562409020343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a solution of the problem about trigonometric polynomials with a given leading harmonic and least deviating from zero in measure; more precisely, with respect to the functional mu(f (n) ) = mes {t a [0, 2 pi]: |f (n) (t)| a parts per thousand yen 1}. We give a solution of a related problem about the minimal value over compact sets (from the real line) of a given measure of least uniform deviation from zero on a compact set for trigonometric polynomials with a fixed leading harmonic.
引用
收藏
页码:280 / 283
页数:4
相关论文
共 11 条
  • [1] Babenko A. G., 1992, T I MAT MEKH URO RAN, V2, P34
  • [2] Bernstein SN., 1937, Extremal Properties of Polynomials
  • [3] Chebyshev P. L., 1947, COMPLETE COLLECTED W, V2, P23
  • [4] Inequalities for derivatives of rational functions on several intervals
    Lukashov, AL
    [J]. IZVESTIYA MATHEMATICS, 2004, 68 (03) : 543 - 565
  • [5] MAERGOIZ LS, 2008, 312M INT SCI CTR RES
  • [6] MAERGOIZ LS, 2008, INT C ALG AN UNST PR, P73
  • [7] MENDELEV AS, 2000, INT C THEOR APPR FUN, P103
  • [8] MENDELEV AS, 1998, ALL RUSS C ALG AN IL, P166
  • [9] Smirnov V. I., 1964, The Constructive Theory of Functions of a Complex Variable
  • [10] Thiran J.-P., 1991, PROGR APPROXIMATION, P771