Graphical model selection and estimation for high dimensional tensor data

被引:19
作者
He, Shiyuan [1 ,2 ]
Yin, Jianxin [1 ,2 ]
Li, Hongzhe [3 ]
Wang, Xing [1 ,2 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Beijing 100872, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[3] Univ Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Gaussian graphical model; Gene networks; l(1) penalized likelihood; Oracle property; Tensor normal distribution;
D O I
10.1016/j.jmva.2014.03.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multi-way tensor data are prevalent in many scientific areas such as genomics and biomedical imaging. We consider a K-way tensor-normal distribution, where the precision matrix for each way has a graphical interpretation. We develop an l(1) penalized maximum likelihood estimation and an efficient coordinate descent-based algorithm for model selection and estimation in such tensor normal graphical models. When the dimensions of the tensor are fixed, we drive the asymptotic distributions and oracle property for the proposed estimates of the precision matrices. When the dimensions diverge as the sample size goes to infinity, we present the rates of convergence of the estimates and sparsistency results. Simulation results demonstrate that the proposed estimation procedure can lead to better estimates of the precision matrices and better identifications of the graph structures defined by the precision matrices than the standard Gaussian graphical models. We illustrate the methods with an analysis of yeast gene expression data measured over different time points and under different experimental conditions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 185
页数:21
相关论文
共 16 条
[1]   TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION [J].
Allen, Genevera I. ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2010, 4 (02) :764-790
[2]  
[Anonymous], 2019, MATRIX DIFFERENTIAL, DOI DOI 10.1002/9781119541219.CH18
[3]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[4]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441
[5]   Separable covariance arrays via the Tucker product, with applications to multivariate relational data [J].
Hoff, Peter D. .
BAYESIAN ANALYSIS, 2011, 6 (02) :179-196
[6]  
Kolda T. G, 2006, Tech. Rep.
[7]   SPARSISTENCY AND RATES OF CONVERGENCE IN LARGE COVARIANCE MATRIX ESTIMATION [J].
Lam, Clifford ;
Fan, Jianqing .
ANNALS OF STATISTICS, 2009, 37 (6B) :4254-4278
[8]   Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression [J].
Omberg, Larsson ;
Meyerson, Joel R. ;
Kobayashi, Kayta ;
Drury, Lucy S. ;
Diffley, John F. X. ;
Alter, Orly .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[9]  
Seber G. A., 2008, MATRIX HDB STAT, V15
[10]   Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization [J].
Spellman, PT ;
Sherlock, G ;
Zhang, MQ ;
Iyer, VR ;
Anders, K ;
Eisen, MB ;
Brown, PO ;
Botstein, D ;
Futcher, B .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3273-3297