Invariant Einstein metrics on flag manifolds with four isotropy summands

被引:43
作者
Arvanitoyeorgos, Andreas [1 ]
Chrysikos, Ioannis [1 ]
机构
[1] Univ Patras, Dept Math, Rion 26500, Greece
关键词
Homogeneous manifold; Einstein metric; Generalized flag manifold; Isotropy representation; t-roots;
D O I
10.1007/s10455-009-9183-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized flag manifold is a homogeneous space of the form G/K, where K is the centralizer of a torus in a compact connected semisimple Lie group G. We classify all flag manifolds with four isotropy summands by the use of t-roots. We present new G-invariant Einstein metrics by solving explicity the Einstein equation. We also examine the isometric problem for these Einstein metrics.
引用
收藏
页码:185 / 219
页数:35
相关论文
共 39 条
[1]   INVARIANT KAHLER-EINSTEIN METRICS ON COMPACT HOMOGENEOUS SPACES [J].
ALEKSEEVSKII, DV ;
PERELOMOV, AM .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (03) :171-182
[2]   Riemannian flag manifolds with homogeneous geodesics [J].
Alekseevsky, Dmitri ;
Arvanitoyeorgos, Andreas .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (08) :3769-3789
[3]  
[Anonymous], 1954, Amer. J. Math., DOI [10.2307/2372397, 10.2307/23723, DOI 10.2307/23723]
[4]  
[Anonymous], 1995, Aspects Math.
[5]  
[Anonymous], 1986, Einstein Manifolds
[6]   NEW INVARIANT EINSTEIN-METRICS ON GENERALIZED FLAG MANIFOLDS [J].
ARVANITOYEORGOS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :981-995
[7]   A variational approach for compact homogeneous Einstein manifolds [J].
Böhm, C ;
Wang, M ;
Ziller, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (04) :681-733
[8]  
BORDEMAN M, 1986, COMMUN MATH PHYS, V102, P604
[9]   CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES .1. [J].
BOREL, A ;
HIRZEBRUCH, F .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (02) :458-538