Thermo-optically tunable spectral broadening in a nonlinear ultra-silicon-rich nitride Bragg grating

被引:22
作者
Cao, Yanmei [1 ]
Sahin, Ezgi [1 ,2 ]
Choi, Ju Won [1 ]
Xing, Peng [1 ]
Chen, George F. R. [1 ]
Ng, D. K. T. [3 ]
Eggleton, Benjamin J. [4 ,5 ]
Tan, Dawn T. H. [1 ]
机构
[1] Singapore Univ Technol & Design, Photon Devices & Syst Grp, 8 Somapah Rd, Singapore 487372, Singapore
[2] Ecole Polytech Fed Lausanne, STI IEL, Photon Syst Lab PHOSL, Stn 11, CH-1015 Lausanne, Switzerland
[3] ASTAR, Inst Microelect, 2 Fusionopolis Way,08-02 Innovis Tower, Singapore 138634, Singapore
[4] Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia
[5] Univ Sydney, Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
基金
新加坡国家研究基金会;
关键词
SOLITONS; LASER;
D O I
10.1364/PRJ.411073
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spectral tunability methods used in optical communications and signal processing leveraging optical, electrical, and acousto-optic effects typically involve spectral truncation that results in energy loss. Here we demonstrate temperature tunable spectral broadening using a nonlinear ultra-silicon-rich nitride device consisting of a 3-mm-long cladding-modulated Bragg grating and a 7-mm-long nonlinear channel waveguide. By operating at frequencies close to the grating band edge, in an apodized Bragg grating, we access strong grating-induced dispersion while maintaining low losses and high transmissivity. We further exploit the redshift in the Bragg grating stopband due to the thermo-optic effect to achieve tunable dispersion, leading to varying degrees of soliton-effect compression and self-phase-modulation-induced spectral broadening. We observe an increase in the bandwidth of the output pulse spectrum from 69 to 106 nm as temperature decreases from 70 degrees C to 25 degrees C, in good agreement with simulated results using the generalized nonlinear Schrodinger equation. The demonstrated approach provides a new avenue to achieve on-chip laser spectral tuning without loss in pulse energy. (C) 2021 Chinese Laser Press
引用
收藏
页码:596 / 604
页数:9
相关论文
共 31 条
[1]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[2]   Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances [J].
Arbabi, Amir ;
Goddard, Lynford L. .
OPTICS LETTERS, 2013, 38 (19) :3878-3881
[3]   A CONTINUOUSLY TUNABLE 65-115-GHZ GUNN OSCILLATOR [J].
CARLSTROM, JE ;
PLAMBECK, RL ;
THORNTON, DD .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1985, 33 (07) :610-619
[4]   Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis [J].
Chen, CM ;
Kelley, PL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (09) :1961-1967
[5]   Compact bandwidth-tunable microring resonators [J].
Chen, Long ;
Sherwood-Droz, Nicolas ;
Lipson, Michal .
OPTICS LETTERS, 2007, 32 (22) :3361-3363
[6]   Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides [J].
Choi, Ju Won ;
Sohn, Byoung-Uk ;
Chen, George F. R. ;
Ng, Doris K. T. ;
Tan, Dawn T. H. .
APL PHOTONICS, 2019, 4 (11)
[7]   Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure [J].
Ding, Yunhong ;
Pu, Minhao ;
Liu, Liu ;
Xu, Jing ;
Peucheret, Christophe ;
Zhang, Xinliang ;
Huang, Dexiu ;
Ou, Haiyan .
OPTICS EXPRESS, 2011, 19 (07) :6462-6470
[8]   Bragg solitons in the nonlinear Schrodinger limit: experiment and theory [J].
Eggleton, BJ ;
de Sterke, CM ;
Slusher, RE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (04) :587-599
[9]   Bragg grating solitons [J].
Eggleton, BJ ;
Slusher, RE ;
deSterke, CM ;
Krug, PA ;
Sipe, JE .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1627-1630
[10]   Temperature-dependent refractive index of silicon and germanium [J].
Frey, Bradley J. ;
Leviton, Douglas B. ;
Madison, Timothy J. .
OPTOMECHANICAL TECHNOLOGIES FOR ASTRONOMY, PTS 1 AND 2, 2006, 6273