Sliding-mode-based temperature regulation of a proton exchange membrane fuel cell test bench

被引:36
作者
Fang, Chuan [1 ,2 ]
Xu, Liangfei [1 ,2 ,3 ]
Cheng, Siliang [1 ,2 ]
Li, Jianqiu [1 ,2 ]
Jiang, Hongliang [1 ,2 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing, Peoples R China
[3] Forschungszentrum Julich, Inst Energy & Climate Res, IEK Electrochem Proc Engn 3, D-52425 Julich, Germany
基金
中国国家自然科学基金;
关键词
PEMFC; Thermal management; Test bench; Sliding-mode control; Extended Kalman Filter; ENERGY MANAGEMENT STRATEGY; COLD START; CITY BUS; SYSTEM; POWER; PERFORMANCE; STACK; TECHNOLOGY; DESIGN;
D O I
10.1016/j.ijhydene.2017.03.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The temperature regulation of a cooling system of a PEMFC (Proton Exchange Membrane Fuel Cell) test bench is studied in this paper. Because of the unique configuration which is dedicated for cold start experiments, the operation at nominal temperature is unstable with a simple PI controller. A sliding-based control strategy is applied to suppress the temperature fluctuation. Firstly the structure of the cooling system is demonstrated and the cause of temperature fluctuation is analyzed. Then, a physics-based model of the cooling system is proposed on the Matlab/Simulink platform and validated with experimental data. Based on the model, a Sliding-mode controller with Extended Kalman Filter (EKF) is designed to regulate the temperature. The simulation results showed that the controlled system performed satisfactorily. Furthermore, when applied to the real system, the controller's real-time performance fulfills the test bench criterion. Experimental data show that the coolant temperature at the outlet of the fuel cell stack is kept in a range within +/- 1 degrees C, disregarding the heat generated at various working condition. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11745 / 11757
页数:13
相关论文
共 33 条
[1]   A novel cooling flow field design for polymer electrolyte membrane fuel cell stack [J].
Alizadeh, E. ;
Rahgoshay, S. M. ;
Rahimi-Esbo, M. ;
Khorshidian, M. ;
Saadat, S. H. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (20) :8525-8532
[2]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[3]   Industrial Applications of the Kalman Filter: A Review [J].
Auger, Francois ;
Hilairet, Mickael ;
Guerrero, Josep M. ;
Monmasson, Eric ;
Orlowska-Kowalska, Teresa ;
Katsura, Seiichiro .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (12) :5458-5471
[4]   Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell [J].
Bressel, Mathieu ;
Hilairet, Mickael ;
Hissel, Daniel ;
Bouamama, Belkacem Ould .
APPLIED ENERGY, 2016, 164 :220-227
[5]   Model-based temperature regulation of a PEM fuel cell system on a city bus [J].
Cheng, Siliang ;
Fang, Chuan ;
Xu, Liangfei ;
Li, Jianqiu ;
Ouyang, Minggao .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) :13566-13575
[6]   Maximum power cold start mode of proton exchange membrane fuel cell [J].
Du, Qing ;
Jia, Bin ;
Luo, Yueqi ;
Chen, Jixin ;
Zhou, Yibo ;
Jiao, Kui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (16) :8390-8400
[7]  
Hähnel C, 2016, MED C CONTR AUTOMAT, P106, DOI 10.1109/MED.2016.7535896
[8]   Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system [J].
Han, Jaeyoung ;
Park, Jisoo ;
Yu, Sangseok .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) :13549-13557
[9]   Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells [J].
Hu, Peng ;
Cao, Guang-Yi ;
Zhu, Xin-Jian ;
Hu, Mingruo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9110-9123
[10]  
Ikezoe K, 2010, SAE TECH PAP, V11, P10