Human Circulating miRNAs Real-time qRT-PCR-based Analysis: An Overview of Endogenous Reference Genes Used for Data Normalization

被引:89
作者
Donati, Simone [1 ]
Ciuffi, Simone [1 ]
Brandi, Maria L. [1 ,2 ]
机构
[1] Univ Study Florence, Dept Expt & Clin Biomed Sci Mario Serio, Viale Pieraccini 6, I-50139 Florence, Italy
[2] Univ Hosp Florence, Unit Bone & Mineral Dis, Largo Palagi 1, I-50139 Florence, Italy
关键词
circulating microRNAs; endogenous reference genes; non-invasive diagnostic biomarkers; real-time qRT-PCR; POLYMERASE-CHAIN-REACTION; EXPRESSION ANALYSIS; SERUM MICRORNA; TARGET GENES; SMALL RNAS; CANCER; BIOMARKERS; PLASMA; IDENTIFICATION; EXOSOMES;
D O I
10.3390/ijms20184353
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
miRNAs are small non-coding RNAs of about 18-25 nucleotides that negatively regulate gene expression at the post-transcriptional level. It was reported that a deregulation of their expression patterns correlates to the onset and progression of various diseases. Recently, these molecules have been identified in a great plethora of biological fluids, and have also been proposed as potential diagnostic and prognostic biomarkers. Actually, real time quantitative polymerase chain reaction is the most widely used approach for circulating miRNAs (c-miRNAs) expression profiling. Nevertheless, the debate on the choice of the most suitable endogenous reference genes for c-miRNAs expression levels normalization is still open. In this regard, numerous research groups are focusing their efforts upon identifying specific, highly stable, endogenous c-mRNAs. The aim of this review is to provide an overview on the reference genes currently used in the study of various pathologies, offering to researchers the opportunity to select the appropriate molecules for c-miRNA levels normalization, when their choosing is based upon literature data.
引用
收藏
页数:19
相关论文
共 92 条
[1]   Cross-species identification of a plasma microRNA signature for detection, therapeutic monitoring, and prognosis in osteosarcoma [J].
Allen-Rhoades, Wendy ;
Kurenbekova, Lyazat ;
Satterfield, Laura ;
Parikh, Neha ;
Fuja, Daniel ;
Shuck, Ryan L. ;
Rainusso, Nino ;
Trucco, Matteo ;
Barkauskas, Donald A. ;
Jo, Eunji ;
Ahern, Charlotte ;
Hilsenbeck, Susan ;
Donehower, Lawrence A. ;
Yustein, Jason T. .
CANCER MEDICINE, 2015, 4 (07) :977-988
[2]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[3]  
Armand-Labit Virginie, 2017, BioMolecular Concepts, V8, P61, DOI 10.1515/bmc-2017-0002
[4]   Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients [J].
Barry, Simone E. ;
Chan, Brian ;
Ellis, Magda ;
Yang, YuRong ;
Plit, Marshall L. ;
Guan, Guangyu ;
Wang, Xiaolin ;
Britton, Warwick J. ;
Saunders, Bernadette M. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2015, 19 (07) :1606-1613
[5]   Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available [J].
Benes, Vladimir ;
Castoldi, Mirco .
METHODS, 2010, 50 (04) :244-249
[6]   TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex [J].
Blanchard, N ;
Lankar, D ;
Faure, F ;
Regnault, A ;
Dumont, C ;
Raposo, G ;
Hivroz, C .
JOURNAL OF IMMUNOLOGY, 2002, 168 (07) :3235-3241
[7]   Serum microRNAs as non-invasive biomarkers for cancer [J].
Brase, Jan C. ;
Wuttig, Daniela ;
Kuner, Ruprecht ;
Sueltmann, Holger .
MOLECULAR CANCER, 2010, 9
[8]   Pairing beyond the Seed Supports MicroRNA Targeting Specificity [J].
Broughton, James P. ;
Lovci, Michael T. ;
Huang, Jessica L. ;
Yeo, Gene W. ;
Pasquinelli, Amy E. .
MOLECULAR CELL, 2016, 64 (02) :320-333
[9]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655
[10]   Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis [J].
Chen, Jian ;
Li, Kai ;
Pang, Qianqian ;
Yang, Chao ;
Zhang, Hongyu ;
Wu, Feng ;
Cao, Hongqing ;
Liu, Hongju ;
Wan, Yumin ;
Xia, Weibo ;
Wang, Jinfu ;
Dai, Zhongquan ;
Li, Yinghui .
SCIENTIFIC REPORTS, 2016, 6