Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors

被引:36
作者
Aref, Amir Reza [1 ]
Chen, Shih-Wen [2 ]
Rajagopalan, Ramakrishnan [3 ,4 ]
Randall, Clive [2 ,4 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State DuBois, Dept Engn, Du Bois, PA 15801 USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Lithium ion capacitor; High rate anode; Hierarchical porous carbon; Carbon onions; Bimodal porous carbon; SUPERCAPACITOR ELECTRODES; NEGATIVE ELECTRODES; RATE CAPABILITY; NANO-ONIONS; GRAPHENE; NANOSTRUCTURES; NANOTUBES; POROSITY; ALCOHOL; STORAGE;
D O I
10.1016/j.carbon.2019.05.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium ion capacitors made using prelithiated coalesced carbon onion based anode showed excellent high energy and power performance with time constant in the order of similar to 1.45s. The interconnected carbon onion microstructure facilitated both rapid electron and ion transport thereby minimizing the overall resistance. Additionally, high specific capacitance was achieved through control of pore size distribution in high surface area carbons derived from polyfurfuryl alcohol based polymer blends. The fabricated capacitors can be charged and discharged in less than 30s between 2.2V - 4V with energy efficiencies >90%. The maximum achievable energy density was 120 Wh/kg with the capacitor retaining 77 Wh/kg even at a high power density of 11 kW/kg. The capacitors also demonstrated excellent cycling stability with 80% capacitance retention over 21000 cycles along with good thermal stability up to 60 degrees C. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 56 条
[1]   Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits [J].
Ajuria, Jon ;
Redondo, Edurne ;
Arnaiz, Maria ;
Mysyk, Roman ;
Rojo, Teofilo ;
Goikolea, Eider .
JOURNAL OF POWER SOURCES, 2017, 359 :17-26
[2]   High-Voltage Stability of Ionic-Liquid-Based Electrochemical Double Layer Capacitors with a Bimodal Porous Carbon Electrode [J].
Aref, Amir Reza ;
Rajagopalan, Ramakrishnan ;
Randall, Clive A. .
CHEMELECTROCHEM, 2018, 5 (22) :3460-3467
[3]   Bimodal porous carbon electrodes derived from polyfurfuryl alcohol/phloroglucinol for ionic liquid based electrical double layer capacitors [J].
Aref, Amir Reza ;
Chou, Chih-Chuan ;
Rajagopalan, Ramakrishnan ;
Randall, Clive .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (09) :1189-1198
[4]   Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances [J].
Berhaut, Christopher L. ;
Lemordant, Daniel ;
Porion, Patrice ;
Timperman, Laure ;
Schmidt, Gregory ;
Anouti, Meriem .
RSC ADVANCES, 2019, 9 (08) :4599-4608
[5]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[6]   Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon [J].
Burket, Christopher L. ;
Rajagopalan, Ramakrishnan ;
Marencic, Andrew P. ;
Dronvajjala, Krishna ;
Foley, Henry C. .
CARBON, 2006, 44 (14) :2957-2963
[7]   Electrochemical Performance of Lithium-Ion Capacitors Using Pre-Lithiated Multiwalled Carbon Nanotubes as Anode [J].
Cai, Manyuan ;
Sun, Xiaogang ;
Nie, Yanyan ;
Chen, Wei ;
Qiu, Zhiwen ;
Chen, Long ;
Liu, Zhenhong ;
Tang, Hao .
NANO, 2017, 12 (04)
[8]   New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition [J].
Chen, XH ;
Deng, FM ;
Wang, JX ;
Yang, HS ;
Wu, GT ;
Zhang, XB ;
Peng, JC ;
Li, WZ .
CHEMICAL PHYSICS LETTERS, 2001, 336 (3-4) :201-204
[9]   Flame synthesis of carbon nano-onions enhanced by acoustic modulation [J].
Chung, De-Hua ;
Lin, Ta-Hui ;
Hou, Shuhn-Shyurng .
NANOTECHNOLOGY, 2010, 21 (43)
[10]   Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium [J].
Ding, Jia ;
Hu, Wenbin ;
Paek, Eunsu ;
Mitlin, David .
CHEMICAL REVIEWS, 2018, 118 (14) :6457-6498