Strategies for Manipulating Phonon Transport in Solids

被引:44
作者
Kim, Hoon [1 ]
Park, Gimin [1 ]
Park, Sungjin [1 ]
Kim, Woochul [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
phonon transport; thermal conductivity; thermal conductance; specific heat; phonon group velocity; phonon mean free path; transmission probability; phonon density of state; HIGH THERMOELECTRIC PERFORMANCE; ULTRALOW THERMAL-CONDUCTIVITY; HEAT-CONDUCTION; LATTICE-DYNAMICS; WAVE-GUIDES; SCATTERING; QUANTUM; FIGURE; NANOSTRUCTURES; ANHARMONICITY;
D O I
10.1021/acsnano.0c10411
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this review, we summarize the recent efforts on manipulating phonon transport in solids by using specific techniques that modify their phonon thermal conductivity (i.e., specific heat, phonon group velocity, and mean free path) and phonon thermal conductance (i.e., transmission probability and density of states). The strategies discussed for tuning thermal conductivity are as follows: large unit cell approach and liquid-like conduction for maneuvering specific heat; rattler, mini-bandgap, and phonon confinement for manipulating phonon group velocity; nanoparticles, nanosized grains, coated grains, alloy (isotope) scattering, selection rules in phonon dispersion, Gruneisen parameter, lone-pair electronics, dynamic disorder, and local static distortion for restricting mean free path. We have also included the discussion on tuning phonon thermal conductance, as thermal conduction can be viewed as a transmission process. Additionally, phonon filtering, ballistic transport, and waveguiding are discussed to alter density of states and transmission probability. We hope this review can bring meaningful insights to the researchers in the field of phonon transport in solids.
引用
收藏
页码:2182 / 2196
页数:15
相关论文
共 125 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   Dynamical splitting of cubic crystal field levels in rare-earth cage compounds [J].
Amara, Mehdi .
PHYSICAL REVIEW B, 2019, 99 (17)
[3]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Strained endotaxial nanostructures with high thermoelectric figure of merit [J].
Biswas, Kanishka ;
He, Jiaqing ;
Zhang, Qichun ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE CHEMISTRY, 2011, 3 (02) :160-166
[6]   3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals [J].
Chang, Cheng ;
Wu, Minghui ;
He, Dongsheng ;
Pei, Yanling ;
Wu, Chao-Feng ;
Wu, Xuefeng ;
Yu, Hulei ;
Zhu, Fangyuan ;
Wang, Kedong ;
Chen, Yue ;
Huang, Li ;
Li, Jing-Feng ;
He, Jiaqing ;
Zhao, Li-Dong .
SCIENCE, 2018, 360 (6390) :778-782
[7]  
Chavez-Angel E., 2016, SILICON NANOMEMBRANE, P305
[8]  
Chen G., 2005, PAPPAL SER MECH ENG
[9]   Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride [J].
Chen, Ke ;
Song, Bai ;
Ravichandran, Navaneetha K. ;
Zheng, Qiye ;
Chen, Xi ;
Lee, Hwijong ;
Sun, Haoran ;
Li, Sheng ;
Gamage, Geethal Amila Udalamatta Gamage ;
Tian, Fei ;
Ding, Zhiwei ;
Song, Qichen ;
Rai, Akash ;
Wu, Hanlin ;
Koirala, Pawan ;
Schmidt, Aaron J. ;
Watanabe, Kenji ;
Lv, Bing ;
Ren, Zhifeng ;
Shi, Li ;
Cahill, David G. ;
Taniguchi, Takashi ;
Broido, David ;
Chen, Gang .
SCIENCE, 2020, 367 (6477) :555-+
[10]   Quantum thermal conductance of electrons in a one-dimensional wire [J].
Chiatti, O. ;
Nicholls, J. T. ;
Proskuryakov, Y. Y. ;
Lumpkin, N. ;
Farrer, I. ;
Ritchie, D. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)