A non-3-choosable planar graph without cycles of length 4 and 5

被引:18
作者
Voigt, M. [1 ]
机构
[1] Univ Appl Sci, D-01069 Dresden, Germany
关键词
choosability; planar graphs; forbidden cycles;
D O I
10.1016/j.disc.2005.11.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steinberg's question from 1975 whether every planar graph without 4- and 5-cycles is 3-colorable is still open. In this paper the analogous question for 3-choosability of such graphs is answered to the negative. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1013 / 1015
页数:3
相关论文
共 10 条
[1]  
ABBOTT HL, 1991, ARS COMBINATORIA, V32, P203
[2]  
[Anonymous], 1995, WILEY INTERSCIENCE S
[3]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183
[4]   A sufficient condition for planar graphs to be 3-colorable [J].
Borodin, OV ;
Raspaud, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) :17-27
[5]  
KOSTOCHKA AV, 2003, COMMUNICATION
[6]   On structure of some plane graphs with application to choosability [J].
Lam, PCB ;
Shiu, WC ;
Xu, BG .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) :285-296
[7]   A note on list improper coloring planar graphs [J].
Lih, KW ;
Song, ZM ;
Wang, WF ;
Zhang, KM .
APPLIED MATHEMATICS LETTERS, 2001, 14 (03) :269-273
[8]   A NOTE ON THE 3-COLOR PROBLEM [J].
SANDERS, DP ;
ZHAO, Y .
GRAPHS AND COMBINATORICS, 1995, 11 (01) :91-94
[9]   3-LIST-COLORING PLANAR GRAPHS OF GIRTH-5 [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :101-107
[10]   A NOT 3-CHOOSABLE PLANAR GRAPH WITHOUT 3-CYCLES [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :325-328