Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties

被引:41
作者
Kim, Junghwan [1 ,2 ]
Kim, Kihyun [3 ,4 ]
Ko, Taeyun [1 ,2 ]
Han, Jusung [1 ,2 ]
Lee, Jong-Chan [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Chem & Biol Engn, 599 Gwanak Ro, Seoul 151744, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, 599 Gwanak Ro, Seoul 151744, South Korea
[3] Gyeongsang Natl Univ, Sch Mat Sci & Engn Polymer Sci & Engn, 501 Jinju Daero, Jinju 660701, South Korea
[4] Gyeongsang Natl Univ, ERI Engn & Engn Res Inst, 501 Jinju Daero, Jinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Polymer composite; Proton exchange membrane; Polybenzimidazole; Graphene oxide; HT-PEMFC;
D O I
10.1016/j.ijhydene.2020.02.193
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer composite membranes are fabricated using poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI) as a polymer matrix and imidazole functionalized graphene oxide (ImGO) as a filler material for high temperature proton exchange membrane fuel cell applications. ImGO is prepared by the reaction of o-phenylenediamine with graphene oxide (GO). The compatibility of ImGO with PBI matrix is found to be better than that of GO, and as a result PBI composite membrane having ImGO exhibits improved physicochemical properties and larger proton conductivity compared with pure PBI and PBI composite membrane having GO. For example, PBI composite membrane having 0.5 wt% of ImGO shows enhanced tensile strength (219.2 MPa) with minimal decrease of elongation at break value (28.8%) compared with PBI composite membrane having 0.5 wt% of GO (215.5 MPa, 15.4%) and pure PBI membrane without any filler (181.0 MPa, 34.8%). The proton conductivity of this membrane, at 150 degrees C under anhydrous condition, is 77.52 mS cm(-1). (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12254 / 12262
页数:9
相关论文
共 68 条
[1]   Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes [J].
Ai, Wei ;
Zhou, Weiwei ;
Du, Zhuzhu ;
Du, Yaping ;
Zhang, Hua ;
Jia, Xingtao ;
Xie, Linghai ;
Yi, Mingdong ;
Yu, Ting ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (44) :23439-23446
[2]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[3]   Synthesis and characterization of new thermally stable polybenzimidazoles and poly(amide-benzimidazole)s [J].
Banihashemi, A ;
Atabaki, F .
EUROPEAN POLYMER JOURNAL, 2002, 38 (10) :2119-2124
[4]  
Barbir F, 2006, ENG MAT PRO, P27
[5]   Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges [J].
Bose, Saswata ;
Kuila, Tapas ;
Thi Xuan Lien Nguyen ;
Kim, Nam Hoon ;
Lau, Kin-tak ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) :813-843
[6]  
Cai YB, 2017, J APPL POLYM SCI, V134, DOI [10.1002/app.44986, 10.1002/APP.44986]
[7]  
Carrette L, 2001, FUEL CELLS, V1, P5, DOI 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO
[8]  
2-G
[9]   Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles [J].
Chang, Zhihong ;
Pu, Hongting ;
Wan, Decheng ;
Jin, Ming ;
Pan, Haiyan .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (12) :2648-2653
[10]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337