Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction

被引:118
作者
Yasuda, Satoshi [1 ]
Futaba, Don N. [1 ]
Yamada, Takeo [1 ]
Satou, Junichi [1 ]
Shibuya, Akiyoshi [3 ]
Takai, Hirokazu [3 ]
Arakawa, Kouhei [3 ]
Yumura, Motoo [1 ]
Hata, Kenji [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan
[2] Japan Sci & Technol Agcy JST, Kawaguchi, Saitama 3320012, Japan
[3] ZEON Corp, Chiyoda Ku, Tokyo 1008246, Japan
关键词
carbon nanotube; forest; water-assisted chemical vapor deposition; gas delivery; lifetime; CHEMICAL-VAPOR-DEPOSITION; ARRAYS; CATALYSTS; WATER; SHEETS;
D O I
10.1021/nn9007302
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A gas shower system was introduced to improve the growth of single-walled carbon nanotube (SWNT) forests by controling the gas flow direction. Delivery of gases from the top of the forest enabled direct and precise supply of ethylene and water vapor to the Fe catalysts. As such, this approach solved one of the limiting factors of water-assisted chemical vapor deposition method (CVD), that is, delivery of the very small optimum water level to the catalysts, Consequently, this approach improved SWNT forests growth stability, uniformity, reproducibility, carbon efficiency (32%), and catalyst lifetime. With this improved growth, we could synthesize a 1 cm tall forest with 1 x 1 cm size. Also we employed this approach to grow an A4 size SWNT forest to highlight the scalability of water-assisted CVD.
引用
收藏
页码:4164 / 4170
页数:7
相关论文
共 37 条
[1]  
ANDREA P, 2003, THIN SOLID FILMS, V430, P73
[2]   Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures [J].
Cantoro, Mirco ;
Hofmann, Stephan ;
Pisana, Simone ;
Scardaci, Vittorio ;
Parvez, Atlus ;
Ducati, Caterina ;
Ferrari, Andrea C. ;
Blackburn, Arthur M. ;
Wang, Kai-You ;
Robertson, John .
NANO LETTERS, 2006, 6 (06) :1107-1112
[3]   Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays [J].
Eres, G ;
Kinkhabwala, AA ;
Cui, HT ;
Geohegan, DB ;
Puretzky, AA ;
Lowndes, DH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16684-16694
[4]   In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films [J].
Eres, G ;
Puretzky, AA ;
Geohegan, DB ;
Cui, H .
APPLIED PHYSICS LETTERS, 2004, 84 (10) :1759-1761
[5]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[6]   84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach [J].
Futaba, DN ;
Hata, K ;
Namai, T ;
Yamada, T ;
Mizuno, K ;
Hayamizu, Y ;
Yumura, M ;
Iijima, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (15) :8035-8038
[7]   Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis [J].
Futaba, DN ;
Hata, K ;
Yamada, T ;
Mizuno, K ;
Yumura, M ;
Iijima, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (05)
[8]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[9]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[10]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202