Modifying the band gap and optical properties of Germanium nanowires by surface termination

被引:14
作者
Legesse, Merid [1 ,2 ]
Fagas, Giorgos [1 ]
Nolan, Michael [1 ]
机构
[1] Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
基金
爱尔兰科学基金会;
关键词
Ge-nanowires; Bandgap; Surface termination; DFT; Adsoption; FIELD-EFFECT TRANSISTORS; ELECTRONIC-PROPERTIES; SILICON NANOWIRES; FUNCTIONALIZATION; PASSIVATION; EFFICIENCY;
D O I
10.1016/j.apsusc.2016.11.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using -H, -NH2 and -OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the -NH2 and -OH terminations compared to the -H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with -NH2 or -OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry. (C) 2016 Elsevier B. V. All rights reserved.
引用
收藏
页码:1155 / 1163
页数:9
相关论文
共 36 条
[1]   Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure [J].
Alguno, A ;
Usami, N ;
Ujihara, T ;
Fujiwara, K ;
Sazaki, G ;
Nakajima, K ;
Shiraki, Y .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1258-1260
[2]   Theoretical study of the chemical gap tuning in silicon nanowires [J].
Aradi, B. ;
Ramos, L. E. ;
Deak, P. ;
Koehler, Th. ;
Bechstedt, F. ;
Zhang, R. Q. ;
Frauenheim, Th. .
PHYSICAL REVIEW B, 2007, 76 (03)
[3]   Theoretical investigations of Ge nanowires grown along the [110] and [111] directions [J].
Arantes, J. T. ;
Fazzio, A. .
NANOTECHNOLOGY, 2007, 18 (29)
[4]   Structural, electronic, and magnetic properties of Mn-doped Ge nanowires by ab initio calculations [J].
Arantes, J. T. ;
da Silva, Antonio J. R. ;
Fazzio, A. .
PHYSICAL REVIEW B, 2007, 75 (11)
[5]   Density-functional theory band gap of wurtzite InN [J].
Bagayoko, D ;
Franklin, L .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[6]   Quantum confinement effects in Ge [110] nanowires [J].
Beckman, S. P. ;
Han, Jiaxin ;
Chelikowsky, James R. .
PHYSICAL REVIEW B, 2006, 74 (16)
[7]   First-principles optical properties of silicon and germanium nanowires [J].
Bruno, M. ;
Palummo, M. ;
Ossicini, S. ;
Del Sole, R. .
SURFACE SCIENCE, 2007, 601 (13) :2707-2711
[8]   Chemical functionalisation of silicon and germanium nanowires [J].
Collins, Gillian ;
Holmes, Justin D. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (30) :11052-11069
[9]   Organic Functionalization of Germanium Nanowires using Arenediazonium Salts [J].
Collins, Gillian ;
Fleming, Peter ;
O'Dwyer, Colm ;
Morris, Michael A. ;
Holmes, Justin D. .
CHEMISTRY OF MATERIALS, 2011, 23 (07) :1883-1891
[10]   Accurate defect levels obtained from the HSE06 range-separated hybrid functional [J].
Deak, Peter ;
Aradi, Balint ;
Frauenheim, Thomas ;
Janzen, Erik ;
Gali, Adam .
PHYSICAL REVIEW B, 2010, 81 (15)