A study on the stretching potential, anisotropy behavior and mechanical properties of AA7075 and Ti-6Al-4V alloys using forming limit diagram: An experimental, numerical and theoretical approaches

被引:17
作者
Djavanroodi, F. [1 ,2 ]
Ebrahimi, M. [3 ]
Janbakhsh, M. [4 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Mech Engn, Al Khobar, Saudi Arabia
[2] Imperial Coll London, Dept Mech Engn, London, England
[3] Univ Maragheh, Fac Engn, Dept Mech Engn, POB 55136-533, Maragheh, Iran
[4] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
Bulge test; Strain paths; Imperfection factor; Strain hardening exponent; Strain hardening coefficient; ALUMINUM-ALLOYS; YIELD CRITERION; SHEET; PREDICTION; TITANIUM;
D O I
10.1016/j.rinp.2019.102496
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Forming limit diagram of aluminum AA7075 and titanium Ti-6Al-4V alloys was examined. For this aim, various strain paths from uniaxial to equi-biaxial tensions were considered. It was established that titanium alloy stretching potential is more than of aluminum alloy due to higher average strain hardening exponent. Also, the average anisotropy factor of AA7075 is about five times lower than that of Ti-6Al-4V resulting in the reduction of resistance to thinning during sheet metal forming processes. Furthermore, employment of BBC2000 yield criterion for AA7075 and Hill's 1993 for Ti-6Al-4V in determining numerical forming limit diagrams resulted in a closer coincidence with the experimentations. Finally, imperfection factors of 0.970 and 0.955 for AA7075, and 0.935 and 0.960 for Ti-6Al-4V are respectively attained by yield surfaces of BBC2000 and Hill's 1993.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Affronti AME, 2018, MAT BASEL, V1495, P1, DOI [10.3390/ma11091495, DOI 10.3390/MA11091495]
[2]   An improved analytical description of orthotropy in metallic sheets [J].
Banabic, D ;
Aretz, H ;
Comsa, DS ;
Paraianu, L .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (03) :493-512
[3]   Modelling of the Forming Limit Band - A new method to increase the robustness in the simulation of sheet metal forming processes [J].
Banabic, D. ;
Vos, M. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2007, 56 (01) :249-252
[4]   An anisotropic yield criterion for sheet metals [J].
Banabic, D ;
Kuwabara, T ;
Balan, T ;
Comsa, DS .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 157 :462-465
[5]   FLD theoretical model using a new anisotropic yield criterion [J].
Banabic, D ;
Comsa, S ;
Jurco, P ;
Cosovici, G ;
Paraianu, L ;
Julean, D .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 157 :23-27
[6]   Modeling of Forming Limit Bands for Strain-Based Failure-Analysis of Ultra-High-Strength Steels [J].
Bayat, Hamid Reza ;
Sarkar, Sayantan ;
Anantharamaiah, Bharath ;
Italiano, Francesco ;
Bach, Aleksandar ;
Tharani, Shashidharan ;
Wulfinghoff, Stephan ;
Reese, Stefanie .
METALS, 2018, 8 (08)
[7]   A modified elliptical fracture criterion to predict fracture forming limit diagrams for sheet metals [J].
Cao, Jun ;
Li, Fuguo ;
Ma, Xinkai ;
Sun, Zhankun .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 252 :116-127
[8]   Theoretical prediction of forming limit diagram of AZ31 magnesium alloy sheet at warm temperatures [J].
Cao, Xiao-qing ;
Xu, Ping-ping ;
Fan, Qi ;
Wang, Wen-xian .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2016, 26 (09) :2426-2432
[9]   Revisiting Formability and Failure of AISI304 Sheets in SPIF: Experimental Approach and Numerical Validation [J].
Centeno, Gabriel ;
Martinez-Donaire, Andres Jesus ;
Bagudanch, Isabel ;
Morales-Palma, Domingo ;
Garcia-Romeu, Maria Luisa ;
Vallellano, Carpoforo .
METALS, 2017, 7 (12)
[10]   Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets [J].
Djavanroodi, F. ;
Derogar, A. .
MATERIALS & DESIGN, 2010, 31 (10) :4866-4875