Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites

被引:55
作者
Techer, Maeva A. [1 ]
Rane, Rahul, V [2 ,3 ]
Grau, Miguel L. [1 ]
Roberts, John Mk [2 ]
Sullivan, Shawn T. [4 ]
Liachko, Ivan [4 ]
Childers, Anna K. [5 ]
Evans, Jay D. [5 ]
Mikheyev, Alexander S. [1 ,6 ]
机构
[1] Okinawa Inst Sci & Technol, 1919-1 Tancha Onna Son, Onna, Okinawa 9040495, Japan
[2] CSIRO, Clunies Ross St,GPO Box 1700, Acton, ACT 2601, Australia
[3] Univ Melbourne, Sch BioSci, Inst Bio21, 30 Flemington Rd, Parkville, Vic 3010, Australia
[4] Phase Genom Inc, Seattle, WA 98195 USA
[5] USDA ARS, Bee Res Lab, Beltsville, MD USA
[6] Australian Natl Univ, Canberra, ACT 2600, Australia
基金
日本学术振兴会; 澳大利亚研究理事会;
关键词
VARROA-DESTRUCTOR ACARI; MITOCHONDRIAL-DNA SEQUENCE; APIS-CERANA FABR; PHYLOGENETIC-RELATIONSHIPS; MOLECULAR PHYLOGENY; IQ-TREE; JACOBSONI; HOST; PARASITES; ECOLOGY;
D O I
10.1038/s42003-019-0606-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.
引用
收藏
页数:16
相关论文
共 128 条
[21]   Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera [J].
Cornman, Scott R. ;
Schatz, Michael C. ;
Johnston, Spencer J. ;
Chen, Yan-Ping ;
Pettis, Jeff ;
Hunt, Greg ;
Bourgeois, Lanie ;
Elsik, Chris ;
Anderson, Denis ;
Grozinger, Christina M. ;
Evans, Jay D. .
BMC GENOMICS, 2010, 11
[22]   Identification and comparison of Varroa species infesting honey bees [J].
de Guzman, LI ;
Rinderer, TE .
APIDOLOGIE, 1999, 30 (2-3) :85-95
[23]   Parasites within the new phylogeny of eukaryotes [J].
de Meeûs, T ;
Renaud, F .
TRENDS IN PARASITOLOGY, 2002, 18 (06) :247-251
[24]  
De Ruijter A., 1983, P M EC EXP GROUP WAG, P41
[25]  
DELFINADO-BAKER M, 1987, International Journal of Acarology, V13, P233
[26]   The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance [J].
Dermauw, Wannes ;
Van Leeuwen, Thomas .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2014, 45 :89-110
[27]   A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae [J].
Dermauw, Wannes ;
Wybouw, Nicky ;
Rombauts, Stephane ;
Menten, Bjorn ;
Vontas, John ;
Grbic, Miodrag ;
Clark, Richard M. ;
Feyereisen, Rene ;
Van Leeuwen, Thomas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (02) :E113-E122
[28]   The COLOSS BEEBOOK Volume II, Standard methods for Apis mellifera pest and pathogen research: Introduction [J].
Dietemann, Vincent ;
Ellis, James D. ;
Neumann, Peter .
JOURNAL OF APICULTURAL RESEARCH, 2013, 52 (04)
[29]  
Dmitryjuk Malgorzata, 2015, Annals of Parasitology, V61, P21
[30]   Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history [J].
Dong, Xiaofeng ;
Armstrong, Stuart D. ;
Xia, Dong ;
Makepeace, Benjamin L. ;
Darby, Alistair C. ;
Kadowaki, Tatsuhiko .
GIGASCIENCE, 2017, 6 (03)