Uncovering the Mechanism of Chuanhong Stroke Capsule in the Treatment of Stroke Based on Network Pharmacology and Molecular Docking Technology

被引:3
|
作者
Wang, Xu [1 ,2 ]
Zhao, De-xi [1 ]
Kan, Jun-Ming [1 ]
Wang, Jun [2 ]
Chen, Xin [2 ]
Yu, Zi-Qiao [1 ]
Zhao, Wei-sen [2 ]
Han, Mo-Xuan [1 ]
Li, Jinhua [2 ]
机构
[1] Changchun Univ Tradit Chinese Med, Changchun, Jilin, Peoples R China
[2] Jilin Univ, Changchun 130021, Jilin, Peoples R China
关键词
Chuanhong Stroke Capsule; Stroke; Network Pharmacology; Molecular Docking; PI3K-Akt; MAPK; TNF; CEREBRAL-ISCHEMIA; UP-REGULATION; INJURY; GENE; APOPTOSIS; CELLS; ISCHEMIA/REPERFUSION; DEPRIVATION; COMPONENTS; INFARCTION;
D O I
10.1177/1934578X221075988
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background and Objective: Chuanhong Stroke Capsule (CHSC) has good clinical efficacy in the treatment of cerebral ischemic stroke (CIS) patients. This study aimed to investigate the pharmacological mechanisms of CHSC in treating CIS using bioinformatics. Methods: The active compounds of CHSC were screened by searching Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), Swiss absorption, distribution, metabolism, and excretion (ADME), PubMed, and China National Knowledge Infrastructure (CNKI) databases. Besides, the potential targets of active compounds were obtained through TCMSP and Swiss Target Prediction databases. CIS targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM), and Gene Expression Omnibus (GEO) databases. CHSC-CIS intersection targets were identified by matching the two, and prediction and analysis of biological functions and pathways of intersection targets was used the enrichments of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, protein-protein interaction (PPI) network, herb-target, and compound-target network of CHSC-CIS were constructed by Cytoscape3.7.2, and herb-compound-pathway network was drawn with Sankey diagram. Finally, AutoDock was used for molecular docking verification, and identifying the active binding sites in target proteins. Results: A total of 293 putative targets were obtained from 62 active compounds in CHSC. Among them, 209 targets were related to CIS. PPI network showed that the top 16 key targets were RELA, JUN, FOS, MAPK1, AKT1, etc. KEGG pathway enrichment analysis demonstrated that CHSC was enriched in PI3K-Akt, MAPK, and TNF signaling pathways. In addition, GO enrichment analysis showed the significant enrichment of CHSC in the following categories: kinase binding, cellular response to nitrogen compound, etc. Network topology analysis showed that quercetin, luteolin, kaempferol, etc., were the key components in CHSC. Finally, molecular docking studies suggested that the active components in CHSC had a good binding ability with the key targets. Conclusions: Our study demonstrated that CHSC exerted the effect in treating CIS by the characteristics of multi-target and multi-pathway, thereby providing a theoretical basis for further study of the effective components and mechanism of CHSC in the treatment of CIS.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Study on the Mechanism of Zhilong Huoxue Tongyu Capsule in the Treatment of Ischemic Stroke Based on Network Pharmacology and Molecular Docking Technology
    Wang, R. Q.
    Ren, Wei
    Liang, P.
    Liu, Mengnan
    Yang, S. J.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 84 : 234 - 246
  • [2] Multi-target mechanism of Naoshuantong capsule for treatment of Ischemic stroke based on network pharmacology and molecular docking
    Yang, Fengjiao
    Yan, Ya
    Gu, Yun
    Qi, Kezhen
    Chen, Jianjie
    Wang, Guangming
    MEDICINE, 2023, 102 (44) : E35771
  • [3] Investigation into the potential mechanism and molecular targets of Fufang Xueshuantong capsule for the treatment of ischemic stroke based on network pharmacology and molecular docking
    Wang, Lei
    Wang, Liping
    Wang, Hui
    Zhu, Ting
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [4] Mechanism of Gynostemmae Pentaphylli Herba in the treatment of ischemic stroke based on network pharmacology and molecular docking
    Liu, Yonglei
    Zhao, Jishuai
    Song, Jinjiao
    Mao, Hongdie
    Tan, Guojing
    Zhang, Yaling
    Liu, Changyun
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (06): : 4079 - 4089
  • [5] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424
  • [6] Uncovering the Mechanism of Curcuma in the Treatment of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking Technology, and Experiment Verification
    Liu, Suxian
    Li, Qiaodong
    Liu, Fengzhi
    Cao, Hui
    Liu, Jun
    Shan, Jingyi
    Dan, Wenchao
    Yuan, Jianye
    Lin, Jiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [7] Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology
    Shen, Li
    Lu, Jinmiao
    Wang, Guangfei
    Wang, Cheng
    Li, Zhiping
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [8] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Yankai Dong
    Bo Tao
    Xing Xue
    Caixia Feng
    Yating Ren
    Hengyu Ma
    Junli Zhang
    Yufang Si
    Sisi Zhang
    Si Liu
    Hui Li
    Jiahao Zhou
    Ge Li
    Zhifei Wang
    Juanping Xie
    Zhongliang Zhu
    BMC Complementary Medicine and Therapies, 21
  • [9] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Dong, Yankai
    Tao, Bo
    Xue, Xing
    Feng, Caixia
    Ren, Yating
    Ma, Hengyu
    Zhang, Junli
    Si, Yufang
    Zhang, Sisi
    Liu, Si
    Li, Hui
    Zhou, Jiahao
    Li, Ge
    Wang, Zhifei
    Xie, Juanping
    Zhu, Zhongliang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2021, 21 (01)
  • [10] Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking
    Hu, Yaling
    Liu, Shuang
    Liu, Wenyuan
    Zhang, Ziyuan
    Liu, Yuxiang
    Li, Sufen
    Sun, Dalin
    Zhang, Guang
    Fang, Jingai
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2022, 15 : 943 - 962