Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na+ (K+)/H+ Antiporter Gene (PvNHX1)

被引:34
作者
Huang, Yanhua [1 ,2 ]
Guan, Cong [2 ]
Liu, Yanrong [2 ]
Chen, Baoyue [2 ]
Yuan, Shan [2 ]
Cui, Xin [2 ]
Zhang, Yunwei [2 ,3 ,4 ]
Yang, Fuyu [2 ,5 ]
机构
[1] China Agr Univ, Coll Agr & Biotechnol, Dept Crop Ecol & Farming, Beijing, Peoples R China
[2] China Agr Univ, Coll Anim Sci & Technol, Dept Grassland Sci, Beijing, Peoples R China
[3] China Agr Univ, Beijing Key Lab Grassland Sci, Beijing, Peoples R China
[4] Natl Energy R&D Ctr Biomass, Beijing, Peoples R China
[5] Beijing Sure Acad Biosci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
switchgrass; vacuolar Na+ (K+)/H+ antiporter; PvNHX1; growth; salt tolerance; AGROBACTERIUM-MEDIATED TRANSFORMATION; SALT TOLERANCE; CATION/H+ ANTIPORTERS; K+ HOMEOSTASIS; DROUGHT; EXPRESSION; SWEET; NHX1; PH;
D O I
10.3389/fpls.2017.00458
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Switchgrass (Panicum virgaturn L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1 Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1 was found to be expressed throughout the entire growth period of switchgrass, exhibited preferentially expressed in the leaf tissue, and highly induced by salt stress. Transgenic switchgrass overexpressing PvNHX1 showed obvious advantages with respect to plant height and leaf development compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, suggesting PvNHX1 may serve as a promoter in switchgrass growth and development. Moreover, transgenic switchgrass were more tolerant than control plants with better growth-related phenotypes (higher shoot height, larger stem diameter, longer leaf length, and width) and physiological capacities (increased proline accumulation, reduced malondialdehyde production, preserved cell membrane integrity, etc.) under high salinity stress. Furthermore, the genes related to cell growth, flowering, and potassium transporters in transgenic switchgrass exhibited a different expression profiles when compared to the control plants, indicating a pivotal function of PvNHX1 in cell expansion and K+ homeostasis. Taken together, PvNHX1 is essential for normal plant growth and development, and play an important role in the response to salt stress by improving K+ accumulation. Our data provide a valuable foundation for further researches on the molecular mechanism and physiological roles of NHXs in plants.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake [J].
Andres, Zaida ;
Perez-Hormaeche, Javier ;
Leidi, Eduardo O. ;
Schluecking, Kathrin ;
Steinhorst, Leonie ;
McLachlan, Deirdre H. ;
Schumacher, Karin ;
Hetherington, Alistair M. ;
Kudla, Joerg ;
Cubero, Beatriz ;
Pardo, Jose M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :E1806-E1814
[2]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[3]   Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.) [J].
Bao, Ai-Ke ;
Wang, Suo-Min ;
Wu, Guo-Qiang ;
Xi, Jie-Jun ;
Zhang, Jin-Lin ;
Wang, Chun-Mei .
PLANT SCIENCE, 2009, 176 (02) :232-240
[4]   Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis [J].
Barragan, Veronica ;
Leidi, Eduardo O. ;
Andres, Zaida ;
Rubio, Lourdes ;
De Luca, Anna ;
Fernandez, Jose A. ;
Cubero, Beatriz ;
Pardo, Jose M. .
PLANT CELL, 2012, 24 (03) :1127-1142
[5]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[6]   The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters [J].
Bassil, Elias ;
Blumwald, Eduardo .
CURRENT OPINION IN PLANT BIOLOGY, 2014, 22 :1-6
[7]   The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction [J].
Bassil, Elias ;
Tajima, Hiromi ;
Liang, Yin-Chih ;
Ohto, Masa-aki ;
Ushijima, Koichiro ;
Nakano, Ryohei ;
Esumi, Tomoya ;
Coku, Ardian ;
Belmonte, Mark ;
Blumwald, Eduardo .
PLANT CELL, 2011, 23 (09) :3482-3497
[8]   The Arabidopsis Intracellular Na+/H+ Antiporters NHX5 and NHX6 Are Endosome Associated and Necessary for Plant Growth and Development [J].
Bassil, Elias ;
Ohto, Masa-aki ;
Esumi, Tomoya ;
Tajima, Hiromi ;
Zhu, Zhu ;
Cagnac, Olivier ;
Belmonte, Mark ;
Peleg, Zvi ;
Yamaguchi, Toshio ;
Blumwald, Eduardo .
PLANT CELL, 2011, 23 (01) :224-239
[9]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[10]  
Brett CL, 2005, MOL BIOL CELL, V16, P1396, DOI 10.1091/mbc.e04-11-0999