On-chip heralded single photon sources

被引:51
作者
Signorini, S. [1 ]
Pavesi, L. [1 ]
机构
[1] Univ Trento, Dept Phys, Nanosci Lab, Via Sommar 14, I-38123 Trento, Italy
来源
AVS QUANTUM SCIENCE | 2020年 / 2卷 / 04期
基金
欧盟地平线“2020”;
关键词
PARAMETRIC DOWN-CONVERSION; SQUEEZED-LIGHT GENERATION; HEXAGONAL BORON-NITRIDE; BIN ENTANGLED PHOTONS; 2ND-HARMONIC GENERATION; WAVELENGTH CONVERSION; WAVE-GUIDES; QUANTUM TELEPORTATION; FREQUENCY-CONVERSION; MICRORING RESONATORS;
D O I
10.1116/5.0018594
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Time correlated photon pairs are used to produce heralded single photon states for quantum integrated circuits. These states are generated by photon sources, which are called heralded single photon sources. They are based on the detection of one photon which heralds the presence of the other. In this way, pure single photon states can be probabilistically generated and, subsequently, manipulated in complex photonic circuits. Heralded single photon sources are the topic of this review. The authors detail the main parameters and the experiments involved in their characterization, with a focus on their use in integrated photonic circuits. Different geometries and technological platforms are compared, and an assessment of their performances is performed. The final result is that nearly perfect single photon sources are possible and feasible in an integrated platform. A few open issues are also underlined.
引用
收藏
页数:26
相关论文
共 200 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
[2]   Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light [J].
Acernese, F. ;
Agathos, M. ;
Aiello, L. ;
Allocca, A. ;
Amato, A. ;
Ansoldi, S. ;
Antier, S. ;
Arene, M. ;
Arnaud, N. ;
Ascenzi, S. ;
Astone, P. ;
Aubin, F. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Baird, J. ;
Baldaccini, F. ;
Ballardin, G. ;
Baltus, G. ;
Barbieri, C. ;
Barneo, P. ;
Barone, F. ;
Barsuglia, M. ;
Barta, D. ;
Basti, A. ;
Bawaj, M. ;
Bazzan, M. ;
Bejger, M. ;
Belahcene, I ;
Bernuzzi, S. ;
Bersanetti, D. ;
Bertolini, A. ;
Bischi, M. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bobba, F. ;
Boer, M. ;
Bogaert, G. ;
Bondu, F. ;
Bonnand, R. ;
Boom, B. A. ;
Boschi, V ;
Bouffanais, Y. ;
Bozzi, A. ;
Bradaschia, C. ;
Branchesi, M. ;
Breschi, M. ;
Briant, T. ;
Brighenti, F. .
PHYSICAL REVIEW LETTERS, 2019, 123 (23)
[3]   10 Gbps silicon waveguide-integrated infrared avalanche photodiode [J].
Ackert, Jason J. ;
Karar, Abdullah S. ;
Paez, Dixon J. ;
Jessop, Paul E. ;
Cartledge, John C. ;
Knights, Andrew P. .
OPTICS EXPRESS, 2013, 21 (17) :19530-19537
[4]   Programmable four-photon graph states on a silicon chip [J].
Adcock, Jeremy C. ;
Vigliar, Caterina ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Thompson, Mark G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[6]   Photonic state tomography [J].
Altepeter, JB ;
Jeffrey, ER ;
Kwiat, PG .
ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 52, 2005, 52 :105-159
[7]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[8]   Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances [J].
Arbabi, Amir ;
Goddard, Lynford L. .
OPTICS LETTERS, 2013, 38 (19) :3878-3881
[9]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[10]  
Awschalom D, 2020, Arxiv, DOI arXiv:1912.06642