Spark plasma sintering of nano-crystalline ceramics

被引:26
作者
Zhao, Z [1 ]
Buscaglia, V
Bowen, P
Nygren, M
机构
[1] Univ Stockholm, Arrhenius Lab, Dept Inorgan Chem, SE-10691 Stockholm, Sweden
[2] CNR, Inst Energet & Interphases, I-16149 Genoa, Italy
[3] Ecole Polytech Fed Lausanne, MXD, Powder Technol Lab, CH-1015 Lausanne, Switzerland
来源
EURO CERAMICS VIII, PTS 1-3 | 2004年 / 264-268卷
关键词
sintering; nanocrystalline; BaTiO3; gamma-alumina;
D O I
10.4028/www.scientific.net/KEM.264-268.2297
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spark Plasma Sintering (SPS) has been successfully applied in the sintering of nanocrystalline BaTiO3 and gamma-Al2O3 in order to reach fully dense nanostructured ceramics at moderate pressure and temperature. BaTiO3 compacts with densities exceeding 97% and gain size of 50 nm have thus been prepared at temperatures not exceeding 850degreesC using a uniaxial pressure of 100MPa. The selection of sintering temperature is critical for the purpose of minimizing grain growth and there is a demarcation temperature (820degreesC) between normal and abnormal grain growth for the nanocrystalline BaTiO3 powder used in this study. Fully dense alpha-Al2O3 compacts containing grains of the size 300nm or less were consolidated from high-purity gamma-Al2O3 powders without the use of additives or seeds. The transition temperature of gamma-Al2O3 to alpha-Al2O3 can be lowered to 960degreesC when gamma-Al2O3 powder is compacted in the SPS apparatus. The possible mechanisms related to this low transition temperature and to the sintering of both BaTiO3 and gamma-Al2O3 are discussed with special reference to the effect of the pulsed electric field generated by the pulsed electrical current used to heat the sample.
引用
收藏
页码:2297 / 2300
页数:4
相关论文
共 9 条
[1]   From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides [J].
Bowen, P ;
Carry, C .
POWDER TECHNOLOGY, 2002, 128 (2-3) :248-255
[2]   Synthesis of barium titanate powders by low-temperature aqueous synthesis using a new segmented flow tubular reactor [J].
Bowen, P ;
Donnet, M ;
Testino, A ;
Viviani, M ;
Buscaglia, MT ;
Buscaglia, V ;
Nanni, P .
EURO CERAMICS VII, PT 1-3, 2002, 206-2 :21-24
[3]   Sintering dense nanocrystalline ceramics without final-stage grain growth [J].
Chen, IW ;
Wang, XH .
NATURE, 2000, 404 (6774) :168-171
[4]  
Kleinlogel C, 2001, ADV MATER, V13, P1081, DOI 10.1002/1521-4095(200107)13:14<1081::AID-ADMA1081>3.0.CO
[5]  
2-D
[6]   High pressure low temperature sintering of nanocrystalline alumina [J].
Liao, SC ;
Chen, YJ ;
Kear, BH ;
Mayo, WE .
NANOSTRUCTURED MATERIALS, 1998, 10 (06) :1063-1079
[7]   RETENTION OF NANOSTRUCTURE IN ALUMINUM-OXIDE BY VERY RAPID SINTERING AT 1150-DEGREES-C [J].
RISBUD, SH ;
SHAN, CH ;
MUKHERJEE, AK ;
KIM, MJ ;
BOW, JS ;
HOLL, RA .
JOURNAL OF MATERIALS RESEARCH, 1995, 10 (02) :237-239
[8]   Spark plasma sintering of alumina [J].
Shen, ZJ ;
Johnsson, M ;
Zhao, Z ;
Nygren, M .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (08) :1921-1927
[9]   Spark-plasma-sintering of fine BaTiO3 powder prepared by a sol-crystal method [J].
Takeuchi, T ;
Suyama, Y ;
Sinclair, DC ;
Kageyama, H .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (09) :2329-2334