Boundary behavior of harmonic functions in metrics of Bergman type on the polydisc

被引:8
作者
Li, SY [1 ]
Simon, E [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
D O I
10.1353/ajm.2002.0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the following theorem: Any harmonic functions in Bergman type metrics in the polydisc in complex Euclidean space which are continuous up to the boundary must be harmonic in each complex variable.
引用
收藏
页码:1045 / 1057
页数:13
相关论文
共 10 条
[1]  
[Anonymous], 1969, FUNCTION THEORY POLY
[2]   SPHERICAL HARMONIC EXPANSION OF POISSON-SZEGO KERNEL FOR BALL [J].
FOLLAND, GB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :401-408
[3]   SMOOTH SOLUTIONS OF DEGENERATE LAPLACIANS ON STRICTLY PSEUDOCONVEX DOMAINS [J].
GRAHAM, CR ;
LEE, JM .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :697-720
[4]   THE DIRICHLET PROBLEM FOR THE BERGMAN LAPLACIAN .2. [J].
GRAHAM, CR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (06) :563-641
[5]  
HUA L, 1963, HARMONIC ANAL FUNCTI
[6]  
Krantz S.G., 1992, Partial Differential Equations and Complex Analysis
[7]   BOUNDARY-BEHAVIOR OF THE COMPLEX MONGE-AMPERE EQUATION [J].
LEE, J ;
MELROSE, R .
ACTA MATHEMATICA, 1982, 148 :159-192
[8]  
LI SY, 1999, MATH ANN, V43, P333
[9]  
STEIN EM, 1982, BOUNDARY BEHAV HOLOM
[10]  
Stoll M., 1994, Invariant Potential Theory in the Unit Ball of Cn