Comparison of wave-propagation simulations in fractured domains using discrete fractures and equivalent media

被引:0
作者
Rioyos-Romero, Ruben [1 ]
De Basabe, Jonas D. [1 ]
Solorza-Calderon, Selene [2 ]
Gonzalez-Escobar, Mario [3 ]
Gross, Markus [4 ]
机构
[1] Ctr Invest Cient & Educ Super Ensenada CICESE, Seismol Dept, Earth Sci Div, Ensenada 22860, Baja California, Mexico
[2] Univ Autonoma Baja California UABC, Fac Sci, Ensenada 22860, Baja California, Mexico
[3] CICESE, Appl Geophys Dept, Earth Sci Div, Ensenada 22860, Baja California, Mexico
[4] CICESE, Phys Oceanog Dept, Oceanol Div, Ensenada 22860, Baja California, Mexico
关键词
Fracture and flow; Numerical modelling; Computational seismology; Seismic anisotropy; Wave propagation; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; EFFECTIVE ELASTICITY; REFLECTION; ROCKS; MODEL; ANISOTROPY;
D O I
10.1093/gji/ggac014
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fractures largely control reservoir permeability and, therefore, it is of immediate importance to know the geometrical parameters of fracture sets and their effects on seismic data. To understand the interaction between the fractures and seismic wavefield, we performed numerical simulations of elastic wave propagation in fractured digital rocks (FDRs) using the discontinuous Galerkin method, the linear-slip model and sets of randomly distributed fractures. We compared the results with those obtained using Hudson's equivalent media theory (HEM) and observed that, when the fracture density is 0.08 or less, there is no statistical difference between the FDR and HEM results; however, when the fracture density is higher than 0.08, the results of HEM diverge from those of FDR. Furthermore, HEM accuracy depends not only on the fracture density but also on the P- to S-wave velocity ratio. The P-wave anisotropy induced by the fractures is observed as a delay, which can be due to fracture density, length or a mixture of both. The Pwave is delayed in all directions, but mostly in the direction perpendicular to the fractures' orientation.
引用
收藏
页码:427 / 447
页数:21
相关论文
共 42 条
  • [1] LONG-WAVE ELASTIC ANISOTROPY PRODUCED BY HORIZONTAL LAYERING
    BACKUS, GE
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (11): : 4427 - &
  • [2] Estimation of fracture parameters from reflection seismic data - Part I: HTI model due to a single fracture set
    Bakulin, A
    Grechka, V
    Tsvankin, I
    [J]. GEOPHYSICS, 2000, 65 (06) : 1788 - 1802
  • [3] Brenner SC., 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
  • [4] Generalized multiscale finite elements for simulation of elastic-wave propagation in fractured media
    Cho, Yongchae
    Gibson, Richard L., Jr.
    Vasilyeva, Maria
    Efendiev, Yalchin
    [J]. GEOPHYSICS, 2018, 83 (01) : WA9 - WA20
  • [5] Cui X., 2018, SEISMIC FORWARD MODE, DOI [10.1007/978-981-10-3584-5, DOI 10.1007/978-981-10-3584-5]
  • [6] Davis JC., 2002, STAT DATA ANAL GEOLO
  • [7] Elastic wave propagation in fractured media using the discontinuous Galerkin method
    De Basabe, Jonas D.
    Sen, Mrinal K.
    Wheeler, Mary F.
    [J]. GEOPHYSICS, 2016, 81 (04) : T163 - T174
  • [8] Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping
    De Basabe, Jonas D.
    Sen, Mrinal K.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 181 (01) : 577 - 590
  • [9] The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion
    De Basabe, Jonas D.
    Sen, Mrinal K.
    Wheeler, Mary F.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (01) : 83 - 93
  • [10] ROCK LITHOLOGY AND POROSITY DETERMINATION FROM SHEAR AND COMPRESSIONAL WAVE VELOCITY
    DOMENICO, SN
    [J]. GEOPHYSICS, 1984, 49 (08) : 1188 - 1195