Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

被引:75
作者
Zhan, Guoqiang [1 ,2 ]
Zhang, Lixia [1 ,2 ]
Tao, Yong [1 ,2 ]
Wang, Yujian [1 ,2 ]
Zhu, Xiaoyu [1 ,2 ]
Li, Daping [1 ,2 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Biol, Key Lab Environm & Appl Microbiol, Chengdu 610041, Peoples R China
[2] Environm Microbiol Key Lab Sichuan Prov, Chengdu 610041, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Microbial anode; electrochemical activity; Ammonia oxidation; nitrogen removal; ELECTROCHEMICAL OXIDATION; ELECTRICITY PRODUCTION; REMOVAL; MICROORGANISMS; ELECTRODES; MECHANISM;
D O I
10.1016/j.electacta.2014.05.037
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was similar to 60 mg L-1 d(-1), and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn't appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 31 条
[1]  
A.P.H. Association, 1998, STANDARD METHODS EXA
[2]   METHANOGENS - RE-EVALUATION OF A UNIQUE BIOLOGICAL GROUP [J].
BALCH, WE ;
FOX, GE ;
MAGRUM, LJ ;
WOESE, CR ;
WOLFE, RS .
MICROBIOLOGICAL REVIEWS, 1979, 43 (02) :260-296
[3]   NITROGEN LOSS CAUSED BY DENITRIFYING NITROSOMONAS CELLS USING AMMONIUM OR HYDROGEN AS ELECTRON-DONORS AND NITRITE AS ELECTRON-ACCEPTOR [J].
BOCK, E ;
SCHMIDT, I ;
STUVEN, R ;
ZART, D .
ARCHIVES OF MICROBIOLOGY, 1995, 163 (01) :16-20
[4]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[5]   Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport [J].
Busalmen, Juan Pablo ;
Esteve-Nunez, Abraham ;
Feliu, Juan Miguel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (07) :2445-2450
[6]   Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Huntley, James ;
Fierer, Noah ;
Owens, Sarah M. ;
Betley, Jason ;
Fraser, Louise ;
Bauer, Markus ;
Gormley, Niall ;
Gilbert, Jack A. ;
Smith, Geoff ;
Knight, Rob .
ISME JOURNAL, 2012, 6 (08) :1621-1624
[7]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[8]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[9]   Electricity-Assisted Biological Hydrogen Production from Acetate by Geobacter sulfurreducens [J].
Geelhoed, Jeanine S. ;
Stams, Alfons J. M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (02) :815-820
[10]   Revealing the mechanism of indirect ammonia electrooxidation [J].
Gendel, Youri ;
Lahav, Ori .
ELECTROCHIMICA ACTA, 2012, 63 :209-219