EXTREMAL FUNCTIONS IN DE BRANGES AND EUCLIDEAN SPACES, II

被引:4
作者
Carneiro, Emanuel [1 ]
Littmann, Friedrich [2 ]
机构
[1] IMPA Inst Nacl Matemat Pura Aplicada, Estrada Dona Castorina 110, Rio De Janeiro, Brazil
[2] North Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
BAND-LIMITED APPROXIMATIONS; ZETA; ZEROS;
D O I
10.1353/ajm.2017.0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the Gaussian subordination framework to generate optimal one-sided approximations to multidimensional real-valued functions by functions of prescribed exponential type. Such extremal problems date back to the works of Betiding and Selberg and provide a variety of applicalions in analysis and analytic number theory. Here we majorize and minorize (on R-N) the Gaussian x -> e(-pi lambda vertical bar x vertical bar 2), where lambda > 0 is a free parameter, by functions with distributional Fourier transforms supported on Euclidean balls, optimizing weighted L-1-errors. By integrating the parameter A against suitable measures, we solve-the analogous problem for a wide class of radial functions. Applications to inequalities and periodic analogues are discussed. The constructions presented here rely on the theory of de Branges spaces of entire functions and on new interpolation tools derived from the theory of Laplace transforms of Laguerre-Polya functions.
引用
收藏
页码:525 / 566
页数:42
相关论文
共 46 条
  • [1] [Anonymous], 1991, Collected Papers, vol.2, Lectures on Sieves
  • [2] [Anonymous], 1947, IZV AKAD NAUK SSSR M
  • [3] Note on a diophantine inequality in several variables
    Barton, JT
    Montgomery, HL
    Vaaler, JD
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) : 337 - 345
  • [4] A FOURIER ANALYTIC PROOF OF THE BLASCHKE-SANTALO INEQUALITY
    Bianchi, Gabriele
    Kelly, Michael
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) : 4901 - 4912
  • [5] Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function
    Carneiro, Emanuel
    Chandee, Vorrapan
    Littmann, Friedrich
    Milinovich, Micah B.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 143 - 182
  • [6] A note on the zeros of zeta and L-functions
    Carneiro, Emanuel
    Chandee, Vorrapan
    Milinovich, Micah B.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 315 - 332
  • [7] Extremal problems in de Branges spaces: the case of truncated and odd functions
    Carneiro, Emanuel
    Goncalves, Felipe
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 17 - 45
  • [8] Extremal functions in de Branges and Euclidean spaces
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. ADVANCES IN MATHEMATICS, 2014, 260 : 281 - 349
  • [9] Entire Approximations for a Class of Truncated and Odd Functions
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (05) : 967 - 996
  • [10] Bandlimited Approximations to the Truncated Gaussian and Applications
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 38 (01) : 19 - 57