RZooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments

被引:66
作者
Bertrand, Amandine R. [1 ,2 ]
Kadri, Naveen K. [1 ,2 ]
Flori, Laurence [3 ]
Gautier, Mathieu [4 ]
Druet, Tom [1 ,2 ]
机构
[1] Univ Liege, GIGA R, Unit Anim Genom, Liege, Belgium
[2] Univ Liege, Fac Vet Med, Liege, Belgium
[3] Univ Montpellier, Montpellier Supagro, CIRAD, SELMET,INRA, Montpellier, France
[4] INRA, Montpellier SupAgro, Cirad, UMR CBGP,IRD, Montferrier Sur Lez, France
来源
METHODS IN ECOLOGY AND EVOLUTION | 2019年 / 10卷 / 06期
关键词
autozygosity; homozygosity-by-descent; identity-by-descent; inbreeding; runs of homozygosity; INBREEDING DEPRESSION; TRAITS; RUNS;
D O I
10.1111/2041-210X.13167
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Identifying homozygous-by-descent (HBD) regions in individual genomes is highly valuable to infer the recent history of populations and to provide insights into trait architecture. Here, we present the RZooRoH R-package that implements an efficient and accurate model-based approach to identify HBD segments. The underlying hidden Markov model partitions the genome-wide individual autozygosity into different age-related HBD classes while accounting for genotyping errors and genetic map information. The RZooRoH package is user-friendly and versatile, accepting either genotyping or sequencing (including low-coverage) data in various formats. Through numerical maximization and parallelization, computational performances were improved compared to our initial Fortran implementation of the model. The package allows to evaluate and compare various models defined by their number of HBD classes and it also provides several graphical functions that help interpretation of the results. RZooRoH is an efficient tool that proves particularly suited for sub-optimal datasets (e.g. low marker density, individual low-coverage sequencing, uneven marker spacing) and for individuals from populations with complex demographic histories. RZooRoH is available from CRAN: .
引用
收藏
页码:860 / 866
页数:7
相关论文
共 24 条
[1]  
Bertrand A., 2017, THESIS U LIEGE LIEGE
[2]  
Bertrand A. R., 2019, RZOOROH R PACKAGE CH, DOI 10.5281/zenodo.2562716
[3]   Runs of homozygosity: windows into population history and trait architecture [J].
Ceballos, Francisco C. ;
Joshi, Peter K. ;
Clark, David W. ;
Ramsay, Michele ;
Wilson, James F. .
NATURE REVIEWS GENETICS, 2018, 19 (04) :220-+
[4]   A model-based approach to characterize individual inbreeding at both global and local genomic scales [J].
Druet, T. ;
Gautier, M. .
MOLECULAR ECOLOGY, 2017, 26 (20) :5820-5841
[5]   Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population [J].
Ferencakovic, Maja ;
Solkner, Johann ;
Kaps, Miroslav ;
Curik, Ino .
JOURNAL OF DAIRY SCIENCE, 2017, 100 (06) :4721-4730
[6]   Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection [J].
Kijas, James W. ;
Lenstra, Johannes A. ;
Hayes, Ben ;
Boitard, Simon ;
Neto, Laercio R. Porto ;
San Cristobal, Magali ;
Servin, Bertrand ;
McCulloch, Russell ;
Whan, Vicki ;
Gietzen, Kimberly ;
Paiva, Samuel ;
Barendse, William ;
Ciani, Elena ;
Raadsma, Herman ;
McEwan, John ;
Dalrymple, Brian .
PLOS BIOLOGY, 2012, 10 (02)
[7]   HOMOZYGOSITY MAPPING - A WAY TO MAP HUMAN RECESSIVE TRAITS WITH THE DNA OF INBRED CHILDREN [J].
LANDER, ES ;
BOTSTEIN, D .
SCIENCE, 1987, 236 (4808) :1567-1570
[8]   Estimation of the inbreeding coefficient through use of genomic data [J].
Leutenegger, AL ;
Prum, B ;
Génin, E ;
Verny, C ;
Lemainque, A ;
Clerget-Darpoux, F ;
Thompson, EA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (03) :516-523
[9]   A novel predictor of multilocus haplotype homozygosity: comparison with existing predictors [J].
MacLeod, I. M. ;
Meuwissen, T. H. E. ;
Hayes, B. J. ;
Goddard, M. E. .
GENETICS RESEARCH, 2009, 91 (06) :413-426
[10]   H3M2: detection of runs of homozygosity from whole-exome sequencing data [J].
Magi, Alberto ;
Tattini, Lorenzo ;
Palombo, Flavia ;
Benelli, Matteo ;
Gialluisi, Alessandro ;
Giusti, Betti ;
Abbate, Rosanna ;
Seri, Marco ;
Gensini, Gian Franco ;
Romeo, Giovanni ;
Pippucci, Tommaso .
BIOINFORMATICS, 2014, 30 (20) :2852-2859