In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona

被引:10
作者
Antolin, Patrick [1 ]
Pagano, Paolo [1 ]
De Moortel, Ineke [1 ]
Nakariakov, Valery M. [2 ,3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[3] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi, South Korea
基金
英国科学技术设施理事会; 新加坡国家研究基金会;
关键词
magnetohydrodynamics (MHD); Sun: activity; Sun: corona; Sun: filaments; prominences; Sun: oscillations; waves; OPTICAL TELESCOPE; HINODE; PROMINENCE; MISSION;
D O I
10.3847/2041-8213/aacf98
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Transverse magnetohydrodynamic (MHD) waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this Letter, we analyze coordinated observations from Hinode/Solar Optical Telescope (SOT) and Interface Region Imaging Spectrograph (IRIS) of a prominence/coronal rain loop-like structure at the limb of the Sun. Cool and dense downflows and upflows are observed along the structure. A collision between a downward and an upward flow with an estimated energy flux of 10(7)-10(8) erg cm(-2) s(-1) is observed to generate oscillatory transverse perturbations of the strands with an estimated approximate to 40 km s(-1) total amplitude, and a short-lived brightening event with the plasma temperature increasing to at least 10(5) K. We interpret this response as sausage and kink transverse MHD waves based on 2D MHD simulations of plasma flow collision. The lengths, density, and velocity differences between the colliding clumps and the strength of the magnetic field are major parameters defining the response to the collision. The presence of asymmetry between the clumps (angle of impact surface and/or offset of flowing axis) is crucial for generating a kink mode. Using the observed values, we successfully reproduce the observed transverse perturbations and brightening, and show adiabatic heating to coronal temperatures. The numerical modeling indicates that the plasma beta in this looplike structure is confined between 0.09 and 0.36. These results suggest that such collisions from counter-streaming flows can be a source of in situ transverse MHD waves, and that for cool and dense prominence conditions such waves could have significant amplitudes.
引用
收藏
页数:6
相关论文
共 26 条
[1]   ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C [J].
Alexander, Caroline E. ;
Walsh, Robert W. ;
Regnier, Stephane ;
Cirtain, Jonathan ;
Winebarger, Amy R. ;
Golub, Leon ;
Kobayashi, Ken ;
Platt, Simon ;
Mitchell, Nick ;
Korreck, Kelly ;
DePontieu, Bart ;
DeForest, Craig ;
Weber, Mark ;
Title, Alan ;
Kuzin, Sergey .
ASTROPHYSICAL JOURNAL LETTERS, 2013, 775 (01)
[2]   THE MULTI-THERMAL AND MULTI-STRANDED NATURE OF CORONAL RAIN [J].
Antolin, P. ;
Vissers, G. ;
Pereira, T. M. D. ;
van der Voort, L. Rouppe ;
Scullion, E. .
ASTROPHYSICAL JOURNAL, 2015, 806 (01)
[3]   OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE [J].
Antolin, P. ;
van der Voort, L. Rouppe .
ASTROPHYSICAL JOURNAL, 2012, 745 (02)
[4]   CORONAL RAIN AS A MARKER FOR CORONAL HEATING MECHANISMS [J].
Antolin, P. ;
Shibata, K. ;
Vissers, G. .
ASTROPHYSICAL JOURNAL, 2010, 716 (01) :154-166
[5]  
Arregui I., 2015, RSPTA, V373, DOI [10.1098/rsta.2014.0261, DOI 10.1098/RSTA.2014.0261]
[6]   Prominence Oscillations [J].
Arregui, Inigo ;
Oliver, Ramon ;
Luis Ballester, Jose .
LIVING REVIEWS IN SOLAR PHYSICS, 2012, 9 (02)
[7]   Magnetohydrodynamic waves and coronal seismology: an overview of recent results [J].
De Moortel, Ineke ;
Nakariakov, Valery M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1970) :3193-3216
[8]   The Interface Region Imaging Spectrograph (IRIS) [J].
De Pontieu, B. ;
Title, A. M. ;
Lemen, J. R. ;
Kushner, G. D. ;
Akin, D. J. ;
Allard, B. ;
Berger, T. ;
Boerner, P. ;
Cheung, M. ;
Chou, C. ;
Drake, J. F. ;
Duncan, D. W. ;
Freeland, S. ;
Heyman, G. F. ;
Hoffman, C. ;
Hurlburt, N. E. ;
Lindgren, R. W. ;
Mathur, D. ;
Rehse, R. ;
Sabolish, D. ;
Seguin, R. ;
Schrijver, C. J. ;
Tarbell, T. D. ;
Wuelser, J. -P. ;
Wolfson, C. J. ;
Yanari, C. ;
Mudge, J. ;
Nguyen-Phuc, N. ;
Timmons, R. ;
van Bezooijen, R. ;
Weingrod, I. ;
Brookner, R. ;
Butcher, G. ;
Dougherty, B. ;
Eder, J. ;
Knagenhjelm, V. ;
Larsen, S. ;
Mansir, D. ;
Phan, L. ;
Boyle, P. ;
Cheimets, P. N. ;
DeLuca, E. E. ;
Golub, L. ;
Gates, R. ;
Hertz, E. ;
McKillop, S. ;
Park, S. ;
Perry, T. ;
Podgorski, W. A. ;
Reeves, K. .
SOLAR PHYSICS, 2014, 289 (07) :2733-2779
[9]   A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE [J].
Hillier, A. ;
Morton, R. J. ;
Erdelyi, R. .
ASTROPHYSICAL JOURNAL LETTERS, 2013, 779 (02)
[10]   Are magnetic dips necessary for prominence formation? [J].
Karpen, JT ;
Antiochos, SK ;
Hohensee, M ;
Klimchuk, JA ;
MacNeice, PJ .
ASTROPHYSICAL JOURNAL, 2001, 553 (01) :L85-L88