Evaluation of surface roughness of a plasma treated polymeric membrane by wavelet analysis and quantification of its enhanced performance

被引:37
作者
Pal, S. [2 ]
Ghatak, S. K. [2 ]
De, S. [1 ]
DasGupta, S. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India
关键词
Wavelet analysis; Surface roughness; Plasma treatment; Fouling; Ultrafiltration membrane;
D O I
10.1016/j.apsusc.2008.07.184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The change in roughness of polyethersulfone (PES) ultrafiltration membranes by plasma treatment is quantified by atomic force microscopy (AFM). A wavelet-based analysis of surface morphology images from AFM is used to evaluate the surface roughness changes of polymeric membranes. Discrete wavelet transform with 3D image analysis is used to capture patterns at all relevant frequency scales-which are not possible with other traditional techniques of image analysis. The hydrophilic nature and roughness of the membrane surfaces are related to fouling over the membrane surfaces with associated change in solvent flux. The changes in flux of the plasma treated membranes are quantified by measuring the enhancement in flux of a model solution of bovine serum albumin (BSA). The results clearly demonstrate that a PES membrane being more hydrophilic and having smoother surface by optimal treatment of cold CO2 plasma is easier to clean and the augmented permeability can be retained in successive use. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:2504 / 2511
页数:8
相关论文
共 50 条
[1]   An introduction to wavelet transforms for chemometricians: A time-frequency approach [J].
Alsberg, BK ;
Woodward, AM ;
Kell, DB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 37 (02) :215-239
[2]   Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform [J].
Angrisani, L ;
Bechou, L ;
Dallet, D ;
Daponte, P ;
Ousten, Y .
MEASUREMENT, 2002, 31 (02) :77-91
[3]   Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance [J].
Boussu, K. ;
Zhang, Y. ;
Cocquyt, J. ;
Van der Meeren, P. ;
Volodin, A. ;
Van Haesendonck, C. ;
Martens, J. A. ;
Van der Bruggen, B. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 278 (1-2) :418-427
[4]   Effects of membrane fouling on solute rejection during membrane filtration of activated sludge [J].
Chang, IS ;
Bag, SO ;
Lee, CH .
PROCESS BIOCHEMISTRY, 2001, 36 (8-9) :855-860
[5]   Controlling fouling in membrane bioreactors operated with a variable throughput [J].
Chua, HC ;
Arno, TC ;
Howell, JA .
DESALINATION, 2002, 149 (1-3) :225-229
[6]   Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components [J].
Duparré, A ;
Ferre-Borrull, J ;
Gliech, S ;
Notni, G ;
Steinert, J ;
Bennett, JM .
APPLIED OPTICS, 2002, 41 (01) :154-171
[7]   Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes [J].
Elimelech, M ;
Zhu, XH ;
Childress, AE ;
Hong, SK .
JOURNAL OF MEMBRANE SCIENCE, 1997, 127 (01) :101-109
[8]   Analyzing atomic force microscopy images using spectral methods [J].
Fang, SJ ;
Haplepete, S ;
Chen, W ;
Helms, CR ;
Edwards, H .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (12) :5891-5898
[9]   Low temperature plasma processes for biomedical applications and membrane processing [J].
Favia, P. ;
Lopez, L. C. ;
Sardella, E. ;
Gristina, R. ;
Nardulli, M. ;
d'Agostino, R. .
DESALINATION, 2006, 199 (1-3) :268-270
[10]   Modification of polysulfone membranes 1.: CO2 plasma treatment [J].
Gancarz, I ;
Pozniak, G ;
Bryjak, M .
EUROPEAN POLYMER JOURNAL, 1999, 35 (08) :1419-1428