Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity

被引:11
作者
Chen, Guanwei [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Henan, Peoples R China
关键词
homoclinic orbits; second order Hamiltonian systems; asymptotically linear; variational method; EXISTENCE;
D O I
10.1186/1687-1847-2014-114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using some different asymptotically linear conditions from those previously used in Hamiltonian systems, we obtain the existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems by the variational method.
引用
收藏
页数:9
相关论文
共 24 条
[11]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[12]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[13]   Existence of homoclinic solutions for a class of second-order Hamiltonian systems [J].
Lv, Xiang ;
Lu, Shiping ;
Yan, Ping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :390-398
[14]  
Omana W., 1992, Diff. Int. Equ, V5, P1115
[15]   Existence of homoclinic solution for the second order Hamiltonian systems [J].
Ou, ZQ ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :203-213
[16]   Multiple homoclinic orbits for a class of Hamiltonian systems [J].
Paturel, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (02) :117-143
[17]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[18]   SOME RESULTS ON CONNECTING ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH ;
TANAKA, K .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) :473-499
[19]   Existence and multiplicity of homoclinic orbits for the second order Hamiltonian systems [J].
Wang, Jun ;
Zhang, Fubao ;
Xu, Junxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :569-581
[20]   Infinitely many homoclinic orbits for the second order Hamiltonian systems with general potentials [J].
Wei, Jicheng ;
Wang, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :694-699