Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity

被引:11
作者
Chen, Guanwei [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Henan, Peoples R China
关键词
homoclinic orbits; second order Hamiltonian systems; asymptotically linear; variational method; EXISTENCE;
D O I
10.1186/1687-1847-2014-114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using some different asymptotically linear conditions from those previously used in Hamiltonian systems, we obtain the existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems by the variational method.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :639-642
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[4]  
[Anonymous], 1994, COMM APPL NONLINEAR
[5]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[6]   Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits [J].
Chen, Guan-Wei .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) :903-918
[7]  
Coti Zelati V., 1991, J. Am. Math. Soc., V4, P693, DOI 10.1090/S0894-0347-1991-1119200-3
[8]  
Ding Y., 2007, INTERDISCIP MATH SCI, V7
[9]  
Ding Y., 1993, DYNAM SYST APPL, V2, P131
[10]   Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems [J].
Ding, Yanheng ;
Lee, Cheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1395-1413