Long time existence and bounded scalar curvature in the Ricci-harmonic flow

被引:8
作者
Li, Yi [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, FSTC, Campus Belval,Maison Nombre,6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Ricci-harmonic flow; Curvature pinching estimates; Bounded scalar curvature; DIFFERENTIAL HARNACK INEQUALITIES; BACKWARD HEAT-EQUATIONS; MANIFOLDS; SINGULARITIES; POTENTIALS; ENTROPY;
D O I
10.1016/j.jde.2018.02.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the long time existence of the Ricci-harmonic flow in terms of scalar curvature and Weyl tensor which extends Cao's result [6] in the Ricci flow. In dimension four, we also study the integral bound of the "Riemann curvature" for the Ricci-harmonic flow generalizing a recently result of Simon [38]. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 97
页数:29
相关论文
共 49 条
[1]  
Abolarinwa A, 2015, ELECT J MATH ANAL AP, V3, P77
[2]  
Bailesteanu M., ARXIV13101619
[3]  
Bailesteanu Mihai, ARXIV13090138
[4]  
Bailesteanu Mihai, ARXIV13090139
[5]  
Bamler Richard H., ARXIV150101291
[6]   Harnack estimates for conjugate heat kernel on evolving manifolds [J].
Cao, Xiaodong ;
Guo, Hongxin ;
Hung Tran .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) :201-214
[7]  
Cao XD, 2011, COMMUN ANAL GEOM, V19, P975
[8]   On the Conditions to Extend Ricci Flow(III) [J].
Chen, Xiuxiong ;
Wang, Bing .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (10) :2349-2367
[9]   On the extension of the Harmonic Ricci flow [J].
Cheng, Liang ;
Zhu, Anqiang .
GEOMETRIAE DEDICATA, 2013, 164 (01) :179-185
[10]  
Chow Bennett, 2006, GRADIENT STUDIES MAT, V77