Condensed matter realization of the axial magnetic effect

被引:118
作者
Chernodub, Maxim N. [1 ,2 ]
Cortijo, Alberto [3 ]
Grushin, Adolfo G. [4 ]
Landsteiner, Karl [5 ]
Vozmediano, Maria A. H. [3 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[4] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[5] Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 08期
关键词
DOPED TOPOLOGICAL INSULATOR; SINGLE DIRAC CONE; SURFACE;
D O I
10.1103/PhysRevB.89.081407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The axial magneticeffect, i.e., the generation of an energy current parallel to an axial magnetic field coupling with opposite signs to left-and right-handed fermions, is a nondissipative transport phenomenon intimately related to the gravitational contribution to the axial anomaly. An axial magnetic field emerges naturally in condensed matter in so-called Weyl semimetals. We present a measurable implementation of the axial magnetic effect. We show that the edge states of a Weyl semimetal at finite temperature possess a temperature dependent angular momentum in the direction of the vector potential intrinsic to the system. Such a realization provides a plausible context for the experimental confirmation of the elusive gravitational anomaly.
引用
收藏
页数:5
相关论文
共 51 条
[1]   Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at √sNN=2.76 TeV [J].
Abelev, B. ;
Adam, J. ;
Adamova, D. ;
Adare, A. M. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agocs, A. G. ;
Agostinelli, A. ;
Aguilar Salazar, S. ;
Ahammed, Z. ;
Ahmad, N. ;
Masoodi, A. Ahmad ;
Ahn, S. A. ;
Ahn, S. U. ;
Akindinov, A. ;
Aleksandrov, D. ;
Alessandro, B. ;
Molina, R. Alfaro ;
Alici, A. ;
Alkin, A. ;
Almaraz Avina, E. ;
Alme, J. ;
Alt, T. ;
Altini, V. ;
Altinpinar, S. ;
Altsybeev, I. ;
Andrei, C. ;
Andronic, A. ;
Anguelov, V. ;
Anielski, J. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arbor, N. ;
Arcelli, S. ;
Arend, A. ;
Armesto, N. ;
Arnaldi, R. ;
Aronsson, T. ;
Arsene, I. C. ;
Arslandok, M. ;
Asryan, A. ;
Augustinus, A. ;
Averbeck, R. ;
Awes, T. C. ;
Aysto, J. ;
Azmi, M. D. .
PHYSICS LETTERS B, 2013, 720 (1-3) :52-62
[2]   GRAVITATIONAL ANOMALIES [J].
ALVAREZGAUME, L ;
WITTEN, E .
NUCLEAR PHYSICS B, 1984, 234 (02) :269-330
[3]   Triangle anomaly in Weyl semimetals [J].
Basar, Goekce ;
Kharzeev, Dmitri E. ;
Yee, Ho-Ung .
PHYSICAL REVIEW B, 2014, 89 (03)
[4]  
Borisenko S., ARXIV13097978
[5]   Numerical evidence of the axial magnetic effect [J].
Braguta, V. ;
Chernodub, M. N. ;
Landsteiner, K. ;
Polikarpov, M. I. ;
Ulybyshev, M. V. .
PHYSICAL REVIEW D, 2013, 88 (07)
[6]  
Buividovich P. V., ARXIV13094966
[7]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[8]   Thin Films of Magnetically Doped Topological Insulator with Carrier-Independent Long-Range Ferromagnetic Order [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Liu, Minhao ;
Zhang, Zuocheng ;
Feng, Xiao ;
Li, Kang ;
Wang, Li-Li ;
Chen, Xi ;
Dai, Xi ;
Fang, Zhong ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng ;
Wang, Yayu ;
He, Ke ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
ADVANCED MATERIALS, 2013, 25 (07) :1065-1070
[9]   Axion response in Weyl semimetals [J].
Chen, Y. ;
Wu, Si ;
Burkov, A. A. .
PHYSICAL REVIEW B, 2013, 88 (12)
[10]   Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator [J].
Chen, Y. L. ;
Chu, J. -H. ;
Analytis, J. G. ;
Liu, Z. K. ;
Igarashi, K. ;
Kuo, H. -H. ;
Qi, X. L. ;
Mo, S. K. ;
Moore, R. G. ;
Lu, D. H. ;
Hashimoto, M. ;
Sasagawa, T. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. X. .
SCIENCE, 2010, 329 (5992) :659-662