Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@NG for high-performance lithium-ion storage

被引:27
作者
Sun, Changlong [1 ]
Chen, Fuzhou [1 ]
Tang, Xiaofu [4 ]
Zhang, Dongdong [4 ]
Zheng, Ke [4 ]
Zhu, Guang [3 ]
Bin Shahid, Usman [2 ]
Liu, Zili [1 ]
Shao, Minhua [2 ]
Wang, Jiahai [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Clear Water Bay, Hong Kong, Peoples R China
[3] Suzhou Univ, Nanomat Anhui Higher Educ Inst, Key Lab Spin Electron, Suzhou 234000, Peoples R China
[4] Dongguan Univ Technol, Coll Mat Sci & Engn, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
GaZnON; Interfacial engineering; Lithium-ion batteries; DFT calculations; OXIDE-ASSISTED SYNTHESIS; LI-ION; ANODE MATERIAL; GRAPHENE; CARBON; NANOSHEETS; BATTERIES; CAPACITY; (GA1-XZNX)(N1-XOX); EVOLUTION;
D O I
10.1016/j.nanoen.2022.107369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial interaction and built-in electric field regulation strategy is developed to construct (Ga1- xZnx)(N1-xOx) (GaZnON) nanoparticles coupled with nitrogen-doped graphene (NG) (GaZnON@NG) via a simple and facile method. Advanced structural characterization and density functional theory (DFT) analysis reveals the strong bridging bonds (Ga-N/N-C) and the interfacial charge transfer in GaZnON@NG. This interfacial interaction can subtly regulate the interfacial electronic state and improve the surface electron density and charge transport kinetics for efficient lithium-ion storage. As a proof-of-concept study, this well-designed GaZnON@NG heterostructure anode shows an enhanced lithium-ion storage performance of 1073.6 mA h g(-1) at 0.1 A g(-1) after 200 cycles. Even at 5.0 A g(-1), the reversible capacity is still maintained at 338.6 mA h g(-1) after 2000 cycles. Electrochemical kinetic analysis corroborates the enhanced pseudocapacitive contribution and lithium-ion reaction kinetics in the GaZnON@NG anode. Furthermore, XRD and XPS analysis of the GaZnON@NG heterostructure reveals good structural stability and reversible lithium-ion intercalation mechanism. DFT analysis further reveals that this GaZnON@NG heterostructure anode possesses lower lithium-ion adsorption energy and higher charge and discharge rates. This interfacial interaction strategy can open opportunities for advanced energy storage applications and beyond.
引用
收藏
页数:12
相关论文
共 69 条
[1]   Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Oh, Si Hyoung ;
Jung, Hun-Gi ;
Chung, Kyung Yoon .
NANO ENERGY, 2017, 42 :106-114
[2]   Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors [J].
Balogun, Muhammad-Sadeeq ;
Zeng, Yinxiang ;
Qiu, Weitao ;
Luo, Yang ;
Onasanya, Amos ;
Olaniyi, Titus K. ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) :9844-9849
[3]   Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Huan, Yongchao ;
Li, Cheng ;
Fang, Pingping ;
Li, Yi ;
Lu, Xihong ;
Tong, Yexiang .
NANO ENERGY, 2015, 11 :348-355
[4]   Recent advances in metal nitrides as high-performance electrode materials for energy storage devices [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Wang, Wang ;
Fang, Pingping ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) :1364-1387
[5]   Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance [J].
Cao, Liang ;
Liang, Xinghui ;
Ou, Xing ;
Yang, Xianfeng ;
Li, Yangzhong ;
Yang, Chenghao ;
Lin, Zhang ;
Liu, Meilin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties [J].
Chang, Li-Wei ;
Chang, Jan-Hau ;
Yeh, Jien-Wei ;
Lin, Heh-Nan ;
Shih, Han C. .
AIP ADVANCES, 2011, 1 (03)
[8]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[9]   Catalytic growth and characterization of gallium nitride nanowires [J].
Chen, CC ;
Yeh, CC ;
Chen, CH ;
Yu, MY ;
Liu, HL ;
Wu, JJ ;
Chen, KH ;
Chen, LC ;
Peng, JY ;
Chen, YF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2791-2798
[10]   Synthesis of (Ga1-xZnx)(N1-xOx) with Enhanced Visible-Light Absorption and Reduced Defects by Suppressing Zn Volatilization [J].
Chen, Dennis P. ;
Skrabalak, Sara E. .
INORGANIC CHEMISTRY, 2016, 55 (08) :3822-3828