Two dimensional solitary waves in shear flows

被引:9
作者
Esfahani, Amin [1 ]
Pastor, Ademir [2 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan 36715364, Iran
[2] Univ Estadual Campinas, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ZAKHAROV-KUZNETSOV EQUATION; KADOMTSEV-PETVIASHVILI EQUATIONS; SOBOLEV SPACES; BENJAMIN; DECAY; ANALYTICITY; REGULARITY; STABILITY; LAYER; IVP;
D O I
10.1007/s00526-018-1383-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study existence and asymptotic behavior of solitary-wave solutions for the generalized Shrira equation, a two-dimensional model appearing in shear flows. The method used to show the existence of such special solutions is based on the mountain pass theorem. One of the main difficulties consists in showing the compact embedding of the energy space in the Lebesgue spaces; this is dealt with interpolation theory. Regularity and decay properties of the solitary waves are also established.
引用
收藏
页数:33
相关论文
共 33 条
  • [1] Abramyan L. A., 1992, Soviet Physics - Doklady, V37, P575
  • [2] Ambrosetti A., 1973, J FUNCT ANAL, V14, P49
  • [3] Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case
    Angulo, J
    Bona, JL
    Linares, F
    Scialom, M
    [J]. NONLINEARITY, 2002, 15 (03) : 759 - 786
  • [4] [Anonymous], 1954, TABLES INTEGRAL TRAN
  • [5] [Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
  • [6] [Anonymous], 1997, Minimax theorems
  • [7] Bergh J., 1979, INTERPOLATION SPACES
  • [8] Decay and analyticity of solitary waves
    Bona, JL
    Li, YA
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (05): : 377 - 430
  • [9] INTERPOLATION OF HILBERT AND SOBOLEV SPACES: QUANTITATIVE ESTIMATES AND COUNTEREXAMPLES
    Chandler-Wilde, S. N.
    Hewett, D. P.
    Moiola, A.
    [J]. MATHEMATIKA, 2015, 61 (02) : 414 - 443
  • [10] The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces
    Cunha, Alysson
    Pastor, Ademir
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2041 - 2067