Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects

被引:71
作者
Julkunen, Heli [1 ]
Cichonska, Anna [1 ,2 ,3 ]
Gautam, Prson [3 ]
Szedmak, Sandor [1 ]
Douat, Jane [1 ]
Pahikkala, Tapio [2 ]
Aittokallio, Tero [1 ,3 ,4 ,5 ,6 ]
Rousu, Juho [1 ]
机构
[1] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Comp Sci, Espoo, Finland
[2] Univ Turku, Dept Future Technol, Turku, Finland
[3] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
[4] Univ Turku, Dept Math & Stat, Turku, Finland
[5] Oslo Univ Hosp, Inst Canc Res, Dept Canc Genet, Oslo, Norway
[6] Univ Oslo, Oslo Ctr Biostat & Epidemiol, Oslo, Norway
基金
芬兰科学院;
关键词
TARGETED THERAPY; CANCER; MELANOMA; SYNERGISM; ALMANAC; PAIRS;
D O I
10.1038/s41467-020-19950-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications. Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Combinatorial drug therapy for cancer in the post-genomic era [J].
Al-Lazikani, Bissan ;
Banerji, Udai ;
Workman, Paul .
NATURE BIOTECHNOLOGY, 2012, 30 (07) :679-691
[2]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[3]  
Blondel M, 2016, ADV NEUR IN, V29
[4]   Perspective Rational Cancer Treatment Combinations: An Urgent Clinical Need [J].
Boshuizen, Julia ;
Peeper, Daniel S. .
MOLECULAR CELL, 2020, 78 (06) :1002-1018
[5]   Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives [J].
Bulusu, Krishna C. ;
Guha, Rajarshi ;
Mason, Daniel J. ;
Lewis, Richard P. I. ;
Muratov, Eugene ;
Motamedi, Yasaman Kalantar ;
Cokol, Murat ;
Bender, Andreas .
DRUG DISCOVERY TODAY, 2016, 21 (02) :225-238
[6]   Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways [J].
Chen, Lei ;
Li, Bi-Qing ;
Zheng, Ming-Yue ;
Zhang, Jian ;
Feng, Kai-Yan ;
Cai, Yu-Dong .
BIOMED RESEARCH INTERNATIONAL, 2013, 2013
[7]   Multiplex PCR for the detection of Mycoplasma fermentans, M-hominis and M-penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome [J].
Choppa, PC ;
Vojdani, A ;
Tagle, C ;
Andrin, R ;
Magtoto, L .
MOLECULAR AND CELLULAR PROBES, 1998, 12 (05) :301-308
[8]   Learning with multiple pairwise kernels for drug bioactivity prediction [J].
Cichonska, Anna ;
Pahikkala, Tapio ;
Szedmak, Sandor ;
Julkunen, Heli ;
Airola, Antti ;
Heinonen, Markus ;
Aittokallio, Tero ;
Rousu, Juho .
BIOINFORMATICS, 2018, 34 (13) :509-518
[9]   Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors [J].
Cichonska, Anna ;
Ravikumar, Balaguru ;
Parri, Elina ;
Timonen, Sanna ;
Pahikkala, Tapio ;
Airola, Antti ;
Wennerberg, Krister ;
Rousu, Juho ;
Aittokallio, Tero .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08)
[10]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57