Definitions of Sobolev classes on metric spaces

被引:112
作者
Franchi, B
Hajlasz, P
Koskela, P
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
[3] Univ Jyvaskyla, Dept Math, FIN-40351 Jyvaskyla, Finland
关键词
Sobolev spaces; metric spaces; doubling measures; Carnot-Caratheodory spaces; hormander's rank condition;
D O I
10.5802/aif.1742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There have been recent attempts to develop the theory of Sobolev spaces W-1.p on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case p = 1.
引用
收藏
页码:1903 / +
页数:23
相关论文
共 23 条
[1]  
Dellacherie C., 1978, N HOLLAND MATH STUDI, V29
[2]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[3]   WEIGHTED SOBOLEV-POINCARE INEQUALITIES FOR GRUSHIN TYPE OPERATORS [J].
FRANCHI, B ;
GUTIERREZ, CE ;
WHEEDEN, RL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (3-4) :523-604
[4]  
Franchi B, 1997, B UNIONE MAT ITAL, V11B, P83
[5]   Self-improving properties of John-Nirenberg and Poincare inequalities on spaces of homogeneous type [J].
Franchi, B ;
Perez, C ;
Wheeden, RL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (01) :108-146
[6]  
Franchi B., 1983, Ann. Sc. Norm. Super. Pisa, Cl. Sci., VIV, P523
[7]  
FRANCHI B., 1996, Int. Math. Res. Not. IMRN, V1996, P1
[8]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[9]  
2-A
[10]   Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Caratheodory spaces [J].
Garofalo, N ;
Nhieu, DM .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 74 (1) :67-97