Low-Threshold Epitaxially Grown 1.3-μm InAs Quantum Dot Lasers on Patterned (001) Si

被引:28
作者
Shang, Chen [1 ]
Wang, Yating [2 ]
Norman, Justin C. [1 ]
Collins, Noelle [3 ]
MacFarlane, Ian [3 ]
Dumont, Mario [3 ]
Liu, Songtao [2 ]
Li, Qiang [4 ]
Lau, Kei M. [4 ]
Gossard, Arthur C. [1 ]
Bowers, John E. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Inst Energy Efficiency, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[4] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
Integrated optoelectronics; quantum dots; wafer; scale integration;
D O I
10.1109/JSTQE.2019.2927581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A three-fold reduction of threshold current, with a minimum threshold current density of 286 A/cm(2), a maximum operating temperature of 80 degrees C, and a maximum 3-dB band-width of 5.8 GHz was achieved for 1.3-mu m InAs quantum dot lasers on patterned, on-axis (001) Si. This was enabled by the reduced threading dislocation density (from 7 x 10(7) to 3 x 10(6) cm(-2)), and optimized probe design. The patterned Si produced antiphase domain free material in the coalesced GaAs buffer layer with reduced misfit/threading dislocation nucleation, without the use of Ge/GaP buffers or substrate miscut. Utilizing aspect ratio trapping, cyclic thermal annealing, and dislocation filter layers, high-quality III-V on Si devices were grown, demonstrating the compelling advantages of this patterned Si template for a monolithic Si photonics integration platform.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility [J].
Alcotte, R. ;
Martin, M. ;
Moeyaert, J. ;
Cipro, R. ;
David, S. ;
Bassani, F. ;
Ducroquet, F. ;
Bogumilowicz, Y. ;
Sanchez, E. ;
Ye, Z. ;
Bao, X. Y. ;
Pin, J. B. ;
Baron, T. .
APL MATERIALS, 2016, 4 (04)
[2]  
[Anonymous], 2017, Cisco7 Feb.
[3]  
Bernardette K., 2018, SEMICOND SCI TECH, V33
[4]   Quantum dots: promises and accomplishments [J].
Bimberg, Dieter ;
Pohl, Udo W. .
MATERIALS TODAY, 2011, 14 (09) :388-397
[5]  
Bowers J. E., 2017, P OPT FIB COMM C EXH
[6]   CLEAVED-COUPLED-CAVITY LASERS WITH LARGE CAVITY LENGTH RATIOS FOR ENHANCED STABILITY [J].
BOWERS, JE ;
BJORKHOLM, JE ;
BURRUS, CA ;
COLDREN, LA ;
HEMENWAY, BR ;
WILT, DP .
APPLIED PHYSICS LETTERS, 1984, 44 (09) :821-823
[7]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/nphoton.2016.21, 10.1038/NPHOTON.2016.21]
[8]  
Gaudette J., 2018, WORKSH EX FOR 208
[9]   Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: A new approach in controlling the bandwidth [J].
Haffouz, S. ;
Raymond, S. ;
Lu, Z. G. ;
Barrios, P. J. ;
Roy-Guay, D. ;
Wu, X. ;
Liu, J. R. ;
Poitras, D. ;
Wasilewski, Z. R. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) :1803-1806
[10]  
Hantschmann C., 2018, P EUR C OPT COMM, P1