ELECTRON ACCELERATION AT A LOW MACH NUMBER PERPENDICULAR COLLISIONLESS SHOCK

被引:37
作者
Umeda, Takayuki [1 ]
Yamao, Masahiro [1 ]
Yamazaki, Ryo [2 ]
机构
[1] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan
[2] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan
关键词
acceleration of particles; plasmas; shock waves; FULL PARTICLE SIMULATION; REST-FRAME MODEL; SUPERNOVA-REMNANTS; SURFING ACCELERATION; MAGNETIC-FIELD; NONTHERMAL EMISSION; BOW SHOCK; GALAXY; FLUCTUATIONS; INJECTION;
D O I
10.1088/0004-637X/695/1/574
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (M-A = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low Mach number perpendicular shocks. In this paper, the effect of the rippling of perpendicular shocks on the electron acceleration is examined by means of large-scale (ion-scale) two-dimensional full particle simulations. It has been shown that a large-amplitude electric field is excited at the shock front in association with the ion-scale rippling, and that reflected ions are accelerated upstream at a localized region where the shock-normal electric field of the rippled structure is polarized upstream. The current-driven instability caused by the highly accelerated reflected ions has a high growth rate of up to large-amplitude electrostatic waves. Energetic electrons are then generated by the large-amplitude electrostatic waves via electron surfing acceleration at the leading edge of the shock-transition region. The present result suggests that the electron surfing acceleration is also a common feature at low Mach number perpendicular collisionless shocks.
引用
收藏
页码:574 / 579
页数:6
相关论文
共 40 条
[21]   Numerical simulations of local shock reformation and ion acceleration in supernova remnants [J].
Lee, RE ;
Chapman, SC ;
Dendy, RO .
ASTROPHYSICAL JOURNAL, 2004, 604 (01) :187-195
[22]   Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms [J].
Lembege, Bertrand ;
Savoini, Philippe ;
Hellinger, Petr ;
Travnicek, Pavel M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[23]   SIMULATION OF A PERPENDICULAR BOW SHOCK [J].
LEROY, MM ;
GOODRICH, CC ;
WINSKE, D ;
WU, CS ;
PAPADOPOULOS, K .
GEOPHYSICAL RESEARCH LETTERS, 1981, 8 (12) :1269-1272
[24]   THE STRUCTURE OF PERPENDICULAR BOW SHOCKS [J].
LEROY, MM ;
WINSKE, D ;
GOODRICH, CC ;
WU, CS ;
PAPADOPOULOS, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA7) :5081-5094
[25]   The properties and causes of rippling in quasi-perpendicular collisionless shock front [J].
Lowe, RE ;
Burgess, D .
ANNALES GEOPHYSICAE, 2003, 21 (03) :671-679
[26]   A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56 [J].
Markevitch, M ;
Gonzalez, AH ;
David, L ;
Vikhlinin, A ;
Murray, S ;
Forman, W ;
Jones, C ;
Tucker, W .
ASTROPHYSICAL JOURNAL, 2002, 567 (01) :L27-L31
[27]   Surfatron and stochastic acceleration of electrons at supernova remnant shocks [J].
McClements, KG ;
Dieckmann, ME ;
Ynnerman, A ;
Chapman, SC ;
Dendy, RO .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :255002-1
[28]   Absence of electron surfing acceleration in a two-dimensional simulation [J].
Ohira, Yutaka ;
Takahara, Fumio .
ASTROPHYSICAL JOURNAL, 2007, 661 (02) :L171-L174
[29]   Whistler critical Mach number and electron acceleration at the bow shock: Geotail observation [J].
Oka, M. ;
Terasawa, T. ;
Seki, Y. ;
Fujimoto, M. ;
Kasaba, Y. ;
Kojima, H. ;
Shinohara, I. ;
Matsui, H. ;
Matsumoto, H. ;
Saito, Y. ;
Mukai, T. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (24)
[30]   Electron preacceleration mechanisms in the foot region of High Alfvenic Mach number shocks [J].
Schmitz, H ;
Chapman, SC ;
Dendy, RO .
ASTROPHYSICAL JOURNAL, 2002, 579 (01) :327-336