The Hopf Structure of Some Dual Operator Algebras

被引:0
|
作者
Kennedy, Matthew [1 ]
Yang, Dilian [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dual algebra; Hopf algebra; free semigroup algebra; Drury-Arveson space; multiplier algebra; FREE SEMIGROUP ALGEBRAS; NONCOMMUTATIVE DISC ALGEBRAS; ANALYTIC TOEPLITZ ALGEBRAS; SLICE MAP PROBLEM; INVARIANT SUBSPACES; REPRESENTATIONS; INTERPOLATION; REFLEXIVITY; CONTINUITY;
D O I
10.1007/s00020-014-2141-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hopf structure of a class of dual operator algebras corresponding to certain semigroups. This class of algebras arises in dilation theory, and includes the noncommutative analytic Toeplitz algebra and the multiplier algebra of the Drury-Arveson space, which correspond to the free semigroup and the free commutative semigroup respectively. The preduals of the algebras in this class naturally form Hopf (convolution) algebras. The original algebras and their preduals form (non-self-adjoint) dual Hopf algebras in the sense of Effros and Ruan. We study these algebras from this perspective, and obtain a number of results about their structure.
引用
收藏
页码:191 / 217
页数:27
相关论文
共 50 条