Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana

被引:58
|
作者
Gilliland, Laura U.
Magallanes-Lundback, Maria
Hemming, Cori
Supplee, Andrea
Koornneef, Maarten
Bentsink, Leonie
DellaPenna, Dean [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] Wageningen Univ, Genet Lab, NL-6703 BD Wageningen, Netherlands
[3] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
关键词
biofortification; quantitative trait loci; seed metabolism; tocopherol;
D O I
10.1073/pnas.0606221103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1-5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a gamma-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering.
引用
收藏
页码:18834 / 18841
页数:8
相关论文
共 50 条
  • [1] The Genetic Basis of Natural Variation in Seed Size and Seed Number and Their Trade-Off Using Arabidopsis thaliana MAGIC Lines
    Gnan, Sebastian
    Priest, Anne
    Kover, Paula X.
    GENETICS, 2014, 198 (04) : 1751 - +
  • [2] The genetic basis of natural variation in the timing of vegetative phase change in Arabidopsis thaliana
    Doody, Erin
    Zha, Yuqi
    He, Jia
    Poethig, R. Scott
    DEVELOPMENT, 2022, 149 (10):
  • [3] Natural variation for seed oil composition in Arabidopsis thaliana
    O'Neill, CM
    Gill, S
    Hobbs, D
    Morgan, C
    Bancroft, I
    PHYTOCHEMISTRY, 2003, 64 (06) : 1077 - 1090
  • [4] Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana
    Postma, Froukje M.
    Agren, Jon
    MOLECULAR ECOLOGY, 2015, 24 (04) : 785 - 797
  • [5] Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions
    Zan, Yanjun
    Shen, Xia
    Forsberg, Simon K. G.
    Carlborg, Orjan
    G3-GENES GENOMES GENETICS, 2016, 6 (08): : 2319 - 2328
  • [6] Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana
    Yu, Zheng
    Haberer, Georg
    Matthes, Michaela
    Rattei, Thomas
    Mayer, Klaus F. X.
    Gierl, Alfons
    Torres-Ruiz, Ramon A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (41) : 17809 - 17814
  • [7] Marker development for the genetic study of natural variation in Arabidopsis thaliana
    Nemri, Adnane
    Neff, Michael M.
    Burrell, Michael
    Jones, Jonathan D. G.
    Studholme, David J.
    BIOINFORMATICS, 2007, 23 (22) : 3108 - 3109
  • [8] Genetic Architecture of Natural Variation of Telomere Length in Arabidopsis thaliana
    Fulcher, Nick
    Teubenbacher, Astrid
    Kerdaffrec, Envel
    Farlow, Ashley
    Nordborg, Magnus
    Riha, Karel
    GENETICS, 2015, 199 (02) : 625 - 635
  • [9] Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana
    Payne, KA
    Bowen, HC
    Hammond, JP
    Hampton, CR
    Lynn, JR
    Mead, A
    Swarup, K
    Bennett, MJ
    White, PJ
    Broadley, MR
    NEW PHYTOLOGIST, 2004, 162 (02) : 535 - 548
  • [10] Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana
    Alonso-Blanco, C
    Bentsink, L
    Hanhart, CJ
    Vries, HBE
    Koornneef, M
    GENETICS, 2003, 164 (02) : 711 - 729